ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fconstmpo Unicode version

Theorem fconstmpo 6098
Description: Representation of a constant operation using the mapping operation. (Contributed by SO, 11-Jul-2018.)
Assertion
Ref Expression
fconstmpo  |-  ( ( A  X.  B )  X.  { C }
)  =  ( x  e.  A ,  y  e.  B  |->  C )
Distinct variable groups:    x, A, y   
x, B, y    x, C, y

Proof of Theorem fconstmpo
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 fconstmpt 4765 . 2  |-  ( ( A  X.  B )  X.  { C }
)  =  ( z  e.  ( A  X.  B )  |->  C )
2 eqidd 2230 . . 3  |-  ( z  =  <. x ,  y
>.  ->  C  =  C )
32mpompt 6095 . 2  |-  ( z  e.  ( A  X.  B )  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  C )
41, 3eqtri 2250 1  |-  ( ( A  X.  B )  X.  { C }
)  =  ( x  e.  A ,  y  e.  B  |->  C )
Colors of variables: wff set class
Syntax hints:    = wceq 1395   {csn 3666   <.cop 3669    |-> cmpt 4144    X. cxp 4716    e. cmpo 6002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-iun 3966  df-opab 4145  df-mpt 4146  df-xp 4724  df-rel 4725  df-oprab 6004  df-mpo 6005
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator