Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  fconstmpo Unicode version

Theorem fconstmpo 5874
 Description: Representation of a constant operation using the mapping operation. (Contributed by SO, 11-Jul-2018.)
Assertion
Ref Expression
fconstmpo
Distinct variable groups:   ,,   ,,   ,,

Proof of Theorem fconstmpo
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 fconstmpt 4594 . 2
2 eqidd 2141 . . 3
32mpompt 5871 . 2
41, 3eqtri 2161 1
 Colors of variables: wff set class Syntax hints:   wceq 1332  csn 3532  cop 3535   cmpt 3997   cxp 4545   cmpo 5784 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-csb 3008  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-iun 3823  df-opab 3998  df-mpt 3999  df-xp 4553  df-rel 4554  df-oprab 5786  df-mpo 5787 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator