ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fconstmpo Unicode version

Theorem fconstmpo 6040
Description: Representation of a constant operation using the mapping operation. (Contributed by SO, 11-Jul-2018.)
Assertion
Ref Expression
fconstmpo  |-  ( ( A  X.  B )  X.  { C }
)  =  ( x  e.  A ,  y  e.  B  |->  C )
Distinct variable groups:    x, A, y   
x, B, y    x, C, y

Proof of Theorem fconstmpo
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 fconstmpt 4722 . 2  |-  ( ( A  X.  B )  X.  { C }
)  =  ( z  e.  ( A  X.  B )  |->  C )
2 eqidd 2206 . . 3  |-  ( z  =  <. x ,  y
>.  ->  C  =  C )
32mpompt 6037 . 2  |-  ( z  e.  ( A  X.  B )  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  C )
41, 3eqtri 2226 1  |-  ( ( A  X.  B )  X.  { C }
)  =  ( x  e.  A ,  y  e.  B  |->  C )
Colors of variables: wff set class
Syntax hints:    = wceq 1373   {csn 3633   <.cop 3636    |-> cmpt 4105    X. cxp 4673    e. cmpo 5946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-iun 3929  df-opab 4106  df-mpt 4107  df-xp 4681  df-rel 4682  df-oprab 5948  df-mpo 5949
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator