ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fconstmpo Unicode version

Theorem fconstmpo 6063
Description: Representation of a constant operation using the mapping operation. (Contributed by SO, 11-Jul-2018.)
Assertion
Ref Expression
fconstmpo  |-  ( ( A  X.  B )  X.  { C }
)  =  ( x  e.  A ,  y  e.  B  |->  C )
Distinct variable groups:    x, A, y   
x, B, y    x, C, y

Proof of Theorem fconstmpo
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 fconstmpt 4740 . 2  |-  ( ( A  X.  B )  X.  { C }
)  =  ( z  e.  ( A  X.  B )  |->  C )
2 eqidd 2208 . . 3  |-  ( z  =  <. x ,  y
>.  ->  C  =  C )
32mpompt 6060 . 2  |-  ( z  e.  ( A  X.  B )  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  C )
41, 3eqtri 2228 1  |-  ( ( A  X.  B )  X.  { C }
)  =  ( x  e.  A ,  y  e.  B  |->  C )
Colors of variables: wff set class
Syntax hints:    = wceq 1373   {csn 3643   <.cop 3646    |-> cmpt 4121    X. cxp 4691    e. cmpo 5969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-iun 3943  df-opab 4122  df-mpt 4123  df-xp 4699  df-rel 4700  df-oprab 5971  df-mpo 5972
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator