ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fconstmpo Unicode version

Theorem fconstmpo 5991
Description: Representation of a constant operation using the mapping operation. (Contributed by SO, 11-Jul-2018.)
Assertion
Ref Expression
fconstmpo  |-  ( ( A  X.  B )  X.  { C }
)  =  ( x  e.  A ,  y  e.  B  |->  C )
Distinct variable groups:    x, A, y   
x, B, y    x, C, y

Proof of Theorem fconstmpo
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 fconstmpt 4691 . 2  |-  ( ( A  X.  B )  X.  { C }
)  =  ( z  e.  ( A  X.  B )  |->  C )
2 eqidd 2190 . . 3  |-  ( z  =  <. x ,  y
>.  ->  C  =  C )
32mpompt 5988 . 2  |-  ( z  e.  ( A  X.  B )  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  C )
41, 3eqtri 2210 1  |-  ( ( A  X.  B )  X.  { C }
)  =  ( x  e.  A ,  y  e.  B  |->  C )
Colors of variables: wff set class
Syntax hints:    = wceq 1364   {csn 3607   <.cop 3610    |-> cmpt 4079    X. cxp 4642    e. cmpo 5898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-iun 3903  df-opab 4080  df-mpt 4081  df-xp 4650  df-rel 4651  df-oprab 5900  df-mpo 5901
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator