ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fconstmpo Unicode version

Theorem fconstmpo 5945
Description: Representation of a constant operation using the mapping operation. (Contributed by SO, 11-Jul-2018.)
Assertion
Ref Expression
fconstmpo  |-  ( ( A  X.  B )  X.  { C }
)  =  ( x  e.  A ,  y  e.  B  |->  C )
Distinct variable groups:    x, A, y   
x, B, y    x, C, y

Proof of Theorem fconstmpo
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 fconstmpt 4656 . 2  |-  ( ( A  X.  B )  X.  { C }
)  =  ( z  e.  ( A  X.  B )  |->  C )
2 eqidd 2171 . . 3  |-  ( z  =  <. x ,  y
>.  ->  C  =  C )
32mpompt 5942 . 2  |-  ( z  e.  ( A  X.  B )  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  C )
41, 3eqtri 2191 1  |-  ( ( A  X.  B )  X.  { C }
)  =  ( x  e.  A ,  y  e.  B  |->  C )
Colors of variables: wff set class
Syntax hints:    = wceq 1348   {csn 3581   <.cop 3584    |-> cmpt 4048    X. cxp 4607    e. cmpo 5852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-iun 3873  df-opab 4049  df-mpt 4050  df-xp 4615  df-rel 4616  df-oprab 5854  df-mpo 5855
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator