ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpoeq3ia Unicode version

Theorem mpoeq3ia 5987
Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
Hypothesis
Ref Expression
mpoeq3ia.1  |-  ( ( x  e.  A  /\  y  e.  B )  ->  C  =  D )
Assertion
Ref Expression
mpoeq3ia  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )

Proof of Theorem mpoeq3ia
StepHypRef Expression
1 mpoeq3ia.1 . . . 4  |-  ( ( x  e.  A  /\  y  e.  B )  ->  C  =  D )
213adant1 1017 . . 3  |-  ( ( T.  /\  x  e.  A  /\  y  e.  B )  ->  C  =  D )
32mpoeq3dva 5986 . 2  |-  ( T. 
->  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  A , 
y  e.  B  |->  D ) )
43mptru 1373 1  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   T. wtru 1365    e. wcel 2167    e. cmpo 5924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-oprab 5926  df-mpo 5927
This theorem is referenced by:  mpodifsnif  6015  mposnif  6016  oprab2co  6276  genpdf  7575  dfioo2  10049  iseqvalcbv  10551  elovmpowrd  10976  dfrhm2  13710  cnfldsub  14131  divcnap  14801
  Copyright terms: Public domain W3C validator