ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpoeq3ia Unicode version

Theorem mpoeq3ia 5907
Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
Hypothesis
Ref Expression
mpoeq3ia.1  |-  ( ( x  e.  A  /\  y  e.  B )  ->  C  =  D )
Assertion
Ref Expression
mpoeq3ia  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )

Proof of Theorem mpoeq3ia
StepHypRef Expression
1 mpoeq3ia.1 . . . 4  |-  ( ( x  e.  A  /\  y  e.  B )  ->  C  =  D )
213adant1 1005 . . 3  |-  ( ( T.  /\  x  e.  A  /\  y  e.  B )  ->  C  =  D )
32mpoeq3dva 5906 . 2  |-  ( T. 
->  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  A , 
y  e.  B  |->  D ) )
43mptru 1352 1  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343   T. wtru 1344    e. wcel 2136    e. cmpo 5844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-oprab 5846  df-mpo 5847
This theorem is referenced by:  mpodifsnif  5935  mposnif  5936  oprab2co  6186  genpdf  7449  dfioo2  9910  iseqvalcbv  10392  divcnap  13195
  Copyright terms: Public domain W3C validator