ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpoeq3ia Unicode version

Theorem mpoeq3ia 6069
Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
Hypothesis
Ref Expression
mpoeq3ia.1  |-  ( ( x  e.  A  /\  y  e.  B )  ->  C  =  D )
Assertion
Ref Expression
mpoeq3ia  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )

Proof of Theorem mpoeq3ia
StepHypRef Expression
1 mpoeq3ia.1 . . . 4  |-  ( ( x  e.  A  /\  y  e.  B )  ->  C  =  D )
213adant1 1039 . . 3  |-  ( ( T.  /\  x  e.  A  /\  y  e.  B )  ->  C  =  D )
32mpoeq3dva 6068 . 2  |-  ( T. 
->  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  A , 
y  e.  B  |->  D ) )
43mptru 1404 1  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395   T. wtru 1396    e. wcel 2200    e. cmpo 6003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-oprab 6005  df-mpo 6006
This theorem is referenced by:  mpodifsnif  6097  mposnif  6098  oprab2co  6364  genpdf  7695  dfioo2  10170  iseqvalcbv  10681  elovmpowrd  11113  dfrhm2  14118  cnfldsub  14539  divcnap  15239
  Copyright terms: Public domain W3C validator