| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mposnif | GIF version | ||
| Description: A mapping with two arguments with the first argument from a singleton and a conditional as result. (Contributed by AV, 14-Feb-2019.) |
| Ref | Expression |
|---|---|
| mposnif | ⊢ (𝑖 ∈ {𝑋}, 𝑗 ∈ 𝐵 ↦ if(𝑖 = 𝑋, 𝐶, 𝐷)) = (𝑖 ∈ {𝑋}, 𝑗 ∈ 𝐵 ↦ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsni 3684 | . . . 4 ⊢ (𝑖 ∈ {𝑋} → 𝑖 = 𝑋) | |
| 2 | 1 | adantr 276 | . . 3 ⊢ ((𝑖 ∈ {𝑋} ∧ 𝑗 ∈ 𝐵) → 𝑖 = 𝑋) |
| 3 | 2 | iftrued 3609 | . 2 ⊢ ((𝑖 ∈ {𝑋} ∧ 𝑗 ∈ 𝐵) → if(𝑖 = 𝑋, 𝐶, 𝐷) = 𝐶) |
| 4 | 3 | mpoeq3ia 6075 | 1 ⊢ (𝑖 ∈ {𝑋}, 𝑗 ∈ 𝐵 ↦ if(𝑖 = 𝑋, 𝐶, 𝐷)) = (𝑖 ∈ {𝑋}, 𝑗 ∈ 𝐵 ↦ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ∈ wcel 2200 ifcif 3602 {csn 3666 ∈ cmpo 6009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-if 3603 df-sn 3672 df-oprab 6011 df-mpo 6012 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |