ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mposnif GIF version

Theorem mposnif 6069
Description: A mapping with two arguments with the first argument from a singleton and a conditional as result. (Contributed by AV, 14-Feb-2019.)
Assertion
Ref Expression
mposnif (𝑖 ∈ {𝑋}, 𝑗𝐵 ↦ if(𝑖 = 𝑋, 𝐶, 𝐷)) = (𝑖 ∈ {𝑋}, 𝑗𝐵𝐶)

Proof of Theorem mposnif
StepHypRef Expression
1 elsni 3664 . . . 4 (𝑖 ∈ {𝑋} → 𝑖 = 𝑋)
21adantr 276 . . 3 ((𝑖 ∈ {𝑋} ∧ 𝑗𝐵) → 𝑖 = 𝑋)
32iftrued 3589 . 2 ((𝑖 ∈ {𝑋} ∧ 𝑗𝐵) → if(𝑖 = 𝑋, 𝐶, 𝐷) = 𝐶)
43mpoeq3ia 6040 1 (𝑖 ∈ {𝑋}, 𝑗𝐵 ↦ if(𝑖 = 𝑋, 𝐶, 𝐷)) = (𝑖 ∈ {𝑋}, 𝑗𝐵𝐶)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1375  wcel 2180  ifcif 3582  {csn 3646  cmpo 5976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-v 2781  df-if 3583  df-sn 3652  df-oprab 5978  df-mpo 5979
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator