ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mposnif GIF version

Theorem mposnif 6016
Description: A mapping with two arguments with the first argument from a singleton and a conditional as result. (Contributed by AV, 14-Feb-2019.)
Assertion
Ref Expression
mposnif (𝑖 ∈ {𝑋}, 𝑗𝐵 ↦ if(𝑖 = 𝑋, 𝐶, 𝐷)) = (𝑖 ∈ {𝑋}, 𝑗𝐵𝐶)

Proof of Theorem mposnif
StepHypRef Expression
1 elsni 3640 . . . 4 (𝑖 ∈ {𝑋} → 𝑖 = 𝑋)
21adantr 276 . . 3 ((𝑖 ∈ {𝑋} ∧ 𝑗𝐵) → 𝑖 = 𝑋)
32iftrued 3568 . 2 ((𝑖 ∈ {𝑋} ∧ 𝑗𝐵) → if(𝑖 = 𝑋, 𝐶, 𝐷) = 𝐶)
43mpoeq3ia 5987 1 (𝑖 ∈ {𝑋}, 𝑗𝐵 ↦ if(𝑖 = 𝑋, 𝐶, 𝐷)) = (𝑖 ∈ {𝑋}, 𝑗𝐵𝐶)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wcel 2167  ifcif 3561  {csn 3622  cmpo 5924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-if 3562  df-sn 3628  df-oprab 5926  df-mpo 5927
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator