| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mtbii | Unicode version | ||
| Description: An inference from a biconditional, similar to modus tollens. (Contributed by NM, 27-Nov-1995.) |
| Ref | Expression |
|---|---|
| mtbii.min |
|
| mtbii.maj |
|
| Ref | Expression |
|---|---|
| mtbii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtbii.min |
. 2
| |
| 2 | mtbii.maj |
. . 3
| |
| 3 | 2 | biimprd 158 |
. 2
|
| 4 | 1, 3 | mtoi 666 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: onsucelsucexmid 4578 nntri2 6580 nntri3 6583 nndceq 6585 inffiexmid 7003 genpdisj 7636 ltposr 7876 hashennn 10925 fsumsplit 11718 sumsplitdc 11743 fprodm1 11909 m1dvdsndvds 12571 |
| Copyright terms: Public domain | W3C validator |