ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mtbii Unicode version

Theorem mtbii 676
Description: An inference from a biconditional, similar to modus tollens. (Contributed by NM, 27-Nov-1995.)
Hypotheses
Ref Expression
mtbii.min  |-  -.  ps
mtbii.maj  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
mtbii  |-  ( ph  ->  -.  ch )

Proof of Theorem mtbii
StepHypRef Expression
1 mtbii.min . 2  |-  -.  ps
2 mtbii.maj . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
32biimprd 158 . 2  |-  ( ph  ->  ( ch  ->  ps ) )
41, 3mtoi 666 1  |-  ( ph  ->  -.  ch )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  onsucelsucexmid  4596  nntri2  6603  nntri3  6606  nndceq  6608  inffiexmid  7029  genpdisj  7671  ltposr  7911  hashennn  10962  fsumsplit  11833  sumsplitdc  11858  fprodm1  12024  m1dvdsndvds  12686
  Copyright terms: Public domain W3C validator