ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mtbii Unicode version

Theorem mtbii 669
Description: An inference from a biconditional, similar to modus tollens. (Contributed by NM, 27-Nov-1995.)
Hypotheses
Ref Expression
mtbii.min  |-  -.  ps
mtbii.maj  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
mtbii  |-  ( ph  ->  -.  ch )

Proof of Theorem mtbii
StepHypRef Expression
1 mtbii.min . 2  |-  -.  ps
2 mtbii.maj . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
32biimprd 157 . 2  |-  ( ph  ->  ( ch  ->  ps ) )
41, 3mtoi 659 1  |-  ( ph  ->  -.  ch )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  onsucelsucexmid  4512  nntri2  6470  nntri3  6473  nndceq  6475  inffiexmid  6880  genpdisj  7472  ltposr  7712  hashennn  10701  fsumsplit  11357  sumsplitdc  11382  fprodm1  11548  m1dvdsndvds  12189
  Copyright terms: Public domain W3C validator