Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  mtbii GIF version

Theorem mtbii 663
 Description: An inference from a biconditional, similar to modus tollens. (Contributed by NM, 27-Nov-1995.)
Hypotheses
Ref Expression
mtbii.min ¬ 𝜓
mtbii.maj (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
mtbii (𝜑 → ¬ 𝜒)

Proof of Theorem mtbii
StepHypRef Expression
1 mtbii.min . 2 ¬ 𝜓
2 mtbii.maj . . 3 (𝜑 → (𝜓𝜒))
32biimprd 157 . 2 (𝜑 → (𝜒𝜓))
41, 3mtoi 653 1 (𝜑 → ¬ 𝜒)
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 104 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604 This theorem depends on definitions:  df-bi 116 This theorem is referenced by:  onsucelsucexmid  4445  nntri2  6390  nntri3  6393  nndceq  6395  inffiexmid  6800  genpdisj  7343  ltposr  7583  hashennn  10538  fsumsplit  11188  sumsplitdc  11213
 Copyright terms: Public domain W3C validator