| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mtbii | GIF version | ||
| Description: An inference from a biconditional, similar to modus tollens. (Contributed by NM, 27-Nov-1995.) | 
| Ref | Expression | 
|---|---|
| mtbii.min | ⊢ ¬ 𝜓 | 
| mtbii.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | 
| Ref | Expression | 
|---|---|
| mtbii | ⊢ (𝜑 → ¬ 𝜒) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mtbii.min | . 2 ⊢ ¬ 𝜓 | |
| 2 | mtbii.maj | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | biimprd 158 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) | 
| 4 | 1, 3 | mtoi 665 | 1 ⊢ (𝜑 → ¬ 𝜒) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: onsucelsucexmid 4566 nntri2 6552 nntri3 6555 nndceq 6557 inffiexmid 6967 genpdisj 7590 ltposr 7830 hashennn 10872 fsumsplit 11572 sumsplitdc 11597 fprodm1 11763 m1dvdsndvds 12417 | 
| Copyright terms: Public domain | W3C validator |