ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltposr Unicode version

Theorem ltposr 7847
Description: Signed real 'less than' is a partial order. (Contributed by Jim Kingdon, 4-Jan-2019.)
Assertion
Ref Expression
ltposr  |-  <R  Po  R.

Proof of Theorem ltposr
Dummy variables  x  y  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7811 . . . . 5  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 id 19 . . . . . . 7  |-  ( [
<. x ,  y >. ]  ~R  =  f  ->  [ <. x ,  y
>. ]  ~R  =  f )
32, 2breq12d 4047 . . . . . 6  |-  ( [
<. x ,  y >. ]  ~R  =  f  -> 
( [ <. x ,  y >. ]  ~R  <R  [ <. x ,  y
>. ]  ~R  <->  f  <R  f ) )
43notbid 668 . . . . 5  |-  ( [
<. x ,  y >. ]  ~R  =  f  -> 
( -.  [ <. x ,  y >. ]  ~R  <R  [ <. x ,  y
>. ]  ~R  <->  -.  f  <R  f ) )
5 ltsopr 7680 . . . . . . . 8  |-  <P  Or  P.
6 ltrelpr 7589 . . . . . . . 8  |-  <P  C_  ( P.  X.  P. )
75, 6soirri 5065 . . . . . . 7  |-  -.  (
x  +P.  y )  <P  ( x  +P.  y
)
8 addcomprg 7662 . . . . . . . 8  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( x  +P.  y
)  =  ( y  +P.  x ) )
98breq2d 4046 . . . . . . 7  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( ( x  +P.  y )  <P  (
x  +P.  y )  <->  ( x  +P.  y ) 
<P  ( y  +P.  x
) ) )
107, 9mtbii 675 . . . . . 6  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  -.  ( x  +P.  y )  <P  (
y  +P.  x )
)
11 ltsrprg 7831 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  <->  ( x  +P.  y ) 
<P  ( y  +P.  x
) ) )
1211anidms 397 . . . . . 6  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( [ <. x ,  y >. ]  ~R  <R  [ <. x ,  y
>. ]  ~R  <->  ( x  +P.  y )  <P  (
y  +P.  x )
) )
1310, 12mtbird 674 . . . . 5  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  -.  [ <. x ,  y >. ]  ~R  <R  [ <. x ,  y
>. ]  ~R  )
141, 4, 13ecoptocl 6690 . . . 4  |-  ( f  e.  R.  ->  -.  f  <R  f )
1514adantl 277 . . 3  |-  ( ( T.  /\  f  e. 
R. )  ->  -.  f  <R  f )
16 lttrsr 7846 . . . 4  |-  ( ( f  e.  R.  /\  g  e.  R.  /\  h  e.  R. )  ->  (
( f  <R  g  /\  g  <R  h )  ->  f  <R  h
) )
1716adantl 277 . . 3  |-  ( ( T.  /\  ( f  e.  R.  /\  g  e.  R.  /\  h  e. 
R. ) )  -> 
( ( f  <R 
g  /\  g  <R  h )  ->  f  <R  h ) )
1815, 17ispod 4340 . 2  |-  ( T. 
->  <R  Po  R. )
1918mptru 1373 1  |-  <R  Po  R.
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364   T. wtru 1365    e. wcel 2167   <.cop 3626   class class class wbr 4034    Po wpo 4330  (class class class)co 5925   [cec 6599   P.cnp 7375    +P. cpp 7377    <P cltp 7379    ~R cer 7380   R.cnr 7381    <R cltr 7387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-2o 6484  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-lti 7391  df-plpq 7428  df-mpq 7429  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-mqqs 7434  df-1nqqs 7435  df-rq 7436  df-ltnqqs 7437  df-enq0 7508  df-nq0 7509  df-0nq0 7510  df-plq0 7511  df-mq0 7512  df-inp 7550  df-iplp 7552  df-iltp 7554  df-enr 7810  df-nr 7811  df-ltr 7814
This theorem is referenced by:  ltsosr  7848
  Copyright terms: Public domain W3C validator