ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltposr Unicode version

Theorem ltposr 7911
Description: Signed real 'less than' is a partial order. (Contributed by Jim Kingdon, 4-Jan-2019.)
Assertion
Ref Expression
ltposr  |-  <R  Po  R.

Proof of Theorem ltposr
Dummy variables  x  y  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7875 . . . . 5  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 id 19 . . . . . . 7  |-  ( [
<. x ,  y >. ]  ~R  =  f  ->  [ <. x ,  y
>. ]  ~R  =  f )
32, 2breq12d 4072 . . . . . 6  |-  ( [
<. x ,  y >. ]  ~R  =  f  -> 
( [ <. x ,  y >. ]  ~R  <R  [ <. x ,  y
>. ]  ~R  <->  f  <R  f ) )
43notbid 669 . . . . 5  |-  ( [
<. x ,  y >. ]  ~R  =  f  -> 
( -.  [ <. x ,  y >. ]  ~R  <R  [ <. x ,  y
>. ]  ~R  <->  -.  f  <R  f ) )
5 ltsopr 7744 . . . . . . . 8  |-  <P  Or  P.
6 ltrelpr 7653 . . . . . . . 8  |-  <P  C_  ( P.  X.  P. )
75, 6soirri 5096 . . . . . . 7  |-  -.  (
x  +P.  y )  <P  ( x  +P.  y
)
8 addcomprg 7726 . . . . . . . 8  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( x  +P.  y
)  =  ( y  +P.  x ) )
98breq2d 4071 . . . . . . 7  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( ( x  +P.  y )  <P  (
x  +P.  y )  <->  ( x  +P.  y ) 
<P  ( y  +P.  x
) ) )
107, 9mtbii 676 . . . . . 6  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  -.  ( x  +P.  y )  <P  (
y  +P.  x )
)
11 ltsrprg 7895 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  <->  ( x  +P.  y ) 
<P  ( y  +P.  x
) ) )
1211anidms 397 . . . . . 6  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( [ <. x ,  y >. ]  ~R  <R  [ <. x ,  y
>. ]  ~R  <->  ( x  +P.  y )  <P  (
y  +P.  x )
) )
1310, 12mtbird 675 . . . . 5  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  -.  [ <. x ,  y >. ]  ~R  <R  [ <. x ,  y
>. ]  ~R  )
141, 4, 13ecoptocl 6732 . . . 4  |-  ( f  e.  R.  ->  -.  f  <R  f )
1514adantl 277 . . 3  |-  ( ( T.  /\  f  e. 
R. )  ->  -.  f  <R  f )
16 lttrsr 7910 . . . 4  |-  ( ( f  e.  R.  /\  g  e.  R.  /\  h  e.  R. )  ->  (
( f  <R  g  /\  g  <R  h )  ->  f  <R  h
) )
1716adantl 277 . . 3  |-  ( ( T.  /\  ( f  e.  R.  /\  g  e.  R.  /\  h  e. 
R. ) )  -> 
( ( f  <R 
g  /\  g  <R  h )  ->  f  <R  h ) )
1815, 17ispod 4369 . 2  |-  ( T. 
->  <R  Po  R. )
1918mptru 1382 1  |-  <R  Po  R.
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373   T. wtru 1374    e. wcel 2178   <.cop 3646   class class class wbr 4059    Po wpo 4359  (class class class)co 5967   [cec 6641   P.cnp 7439    +P. cpp 7441    <P cltp 7443    ~R cer 7444   R.cnr 7445    <R cltr 7451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-eprel 4354  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-1o 6525  df-2o 6526  df-oadd 6529  df-omul 6530  df-er 6643  df-ec 6645  df-qs 6649  df-ni 7452  df-pli 7453  df-mi 7454  df-lti 7455  df-plpq 7492  df-mpq 7493  df-enq 7495  df-nqqs 7496  df-plqqs 7497  df-mqqs 7498  df-1nqqs 7499  df-rq 7500  df-ltnqqs 7501  df-enq0 7572  df-nq0 7573  df-0nq0 7574  df-plq0 7575  df-mq0 7576  df-inp 7614  df-iplp 7616  df-iltp 7618  df-enr 7874  df-nr 7875  df-ltr 7878
This theorem is referenced by:  ltsosr  7912
  Copyright terms: Public domain W3C validator