ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltposr Unicode version

Theorem ltposr 7595
Description: Signed real 'less than' is a partial order. (Contributed by Jim Kingdon, 4-Jan-2019.)
Assertion
Ref Expression
ltposr  |-  <R  Po  R.

Proof of Theorem ltposr
Dummy variables  x  y  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7559 . . . . 5  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 id 19 . . . . . . 7  |-  ( [
<. x ,  y >. ]  ~R  =  f  ->  [ <. x ,  y
>. ]  ~R  =  f )
32, 2breq12d 3950 . . . . . 6  |-  ( [
<. x ,  y >. ]  ~R  =  f  -> 
( [ <. x ,  y >. ]  ~R  <R  [ <. x ,  y
>. ]  ~R  <->  f  <R  f ) )
43notbid 657 . . . . 5  |-  ( [
<. x ,  y >. ]  ~R  =  f  -> 
( -.  [ <. x ,  y >. ]  ~R  <R  [ <. x ,  y
>. ]  ~R  <->  -.  f  <R  f ) )
5 ltsopr 7428 . . . . . . . 8  |-  <P  Or  P.
6 ltrelpr 7337 . . . . . . . 8  |-  <P  C_  ( P.  X.  P. )
75, 6soirri 4941 . . . . . . 7  |-  -.  (
x  +P.  y )  <P  ( x  +P.  y
)
8 addcomprg 7410 . . . . . . . 8  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( x  +P.  y
)  =  ( y  +P.  x ) )
98breq2d 3949 . . . . . . 7  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( ( x  +P.  y )  <P  (
x  +P.  y )  <->  ( x  +P.  y ) 
<P  ( y  +P.  x
) ) )
107, 9mtbii 664 . . . . . 6  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  -.  ( x  +P.  y )  <P  (
y  +P.  x )
)
11 ltsrprg 7579 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  <->  ( x  +P.  y ) 
<P  ( y  +P.  x
) ) )
1211anidms 395 . . . . . 6  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( [ <. x ,  y >. ]  ~R  <R  [ <. x ,  y
>. ]  ~R  <->  ( x  +P.  y )  <P  (
y  +P.  x )
) )
1310, 12mtbird 663 . . . . 5  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  -.  [ <. x ,  y >. ]  ~R  <R  [ <. x ,  y
>. ]  ~R  )
141, 4, 13ecoptocl 6524 . . . 4  |-  ( f  e.  R.  ->  -.  f  <R  f )
1514adantl 275 . . 3  |-  ( ( T.  /\  f  e. 
R. )  ->  -.  f  <R  f )
16 lttrsr 7594 . . . 4  |-  ( ( f  e.  R.  /\  g  e.  R.  /\  h  e.  R. )  ->  (
( f  <R  g  /\  g  <R  h )  ->  f  <R  h
) )
1716adantl 275 . . 3  |-  ( ( T.  /\  ( f  e.  R.  /\  g  e.  R.  /\  h  e. 
R. ) )  -> 
( ( f  <R 
g  /\  g  <R  h )  ->  f  <R  h ) )
1815, 17ispod 4234 . 2  |-  ( T. 
->  <R  Po  R. )
1918mptru 1341 1  |-  <R  Po  R.
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1332   T. wtru 1333    e. wcel 1481   <.cop 3535   class class class wbr 3937    Po wpo 4224  (class class class)co 5782   [cec 6435   P.cnp 7123    +P. cpp 7125    <P cltp 7127    ~R cer 7128   R.cnr 7129    <R cltr 7135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-2o 6322  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-enq0 7256  df-nq0 7257  df-0nq0 7258  df-plq0 7259  df-mq0 7260  df-inp 7298  df-iplp 7300  df-iltp 7302  df-enr 7558  df-nr 7559  df-ltr 7562
This theorem is referenced by:  ltsosr  7596
  Copyright terms: Public domain W3C validator