ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodm1 Unicode version

Theorem fprodm1 11780
Description: Separate out the last term in a finite product. (Contributed by Scott Fenton, 16-Dec-2017.)
Hypotheses
Ref Expression
fprodm1.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
fprodm1.2  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
fprodm1.3  |-  ( k  =  N  ->  A  =  B )
Assertion
Ref Expression
fprodm1  |-  ( ph  ->  prod_ k  e.  ( M ... N ) A  =  ( prod_
k  e.  ( M ... ( N  - 
1 ) ) A  x.  B ) )
Distinct variable groups:    B, k    ph, k    k, M    k, N
Allowed substitution hint:    A( k)

Proof of Theorem fprodm1
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 fzp1nel 10196 . . . . 5  |-  -.  (
( N  -  1 )  +  1 )  e.  ( M ... ( N  -  1
) )
2 fprodm1.1 . . . . . . . . 9  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
3 eluzelz 9627 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
42, 3syl 14 . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
54zcnd 9466 . . . . . . 7  |-  ( ph  ->  N  e.  CC )
6 1cnd 8059 . . . . . . 7  |-  ( ph  ->  1  e.  CC )
75, 6npcand 8358 . . . . . 6  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  =  N )
87eleq1d 2265 . . . . 5  |-  ( ph  ->  ( ( ( N  -  1 )  +  1 )  e.  ( M ... ( N  -  1 ) )  <-> 
N  e.  ( M ... ( N  - 
1 ) ) ) )
91, 8mtbii 675 . . . 4  |-  ( ph  ->  -.  N  e.  ( M ... ( N  -  1 ) ) )
10 disjsn 3685 . . . 4  |-  ( ( ( M ... ( N  -  1 ) )  i^i  { N } )  =  (/)  <->  -.  N  e.  ( M ... ( N  -  1 ) ) )
119, 10sylibr 134 . . 3  |-  ( ph  ->  ( ( M ... ( N  -  1
) )  i^i  { N } )  =  (/) )
12 eluzel2 9623 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
132, 12syl 14 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
14 peano2zm 9381 . . . . . . 7  |-  ( M  e.  ZZ  ->  ( M  -  1 )  e.  ZZ )
1513, 14syl 14 . . . . . 6  |-  ( ph  ->  ( M  -  1 )  e.  ZZ )
1613zcnd 9466 . . . . . . . . 9  |-  ( ph  ->  M  e.  CC )
1716, 6npcand 8358 . . . . . . . 8  |-  ( ph  ->  ( ( M  - 
1 )  +  1 )  =  M )
1817fveq2d 5565 . . . . . . 7  |-  ( ph  ->  ( ZZ>= `  ( ( M  -  1 )  +  1 ) )  =  ( ZZ>= `  M
) )
192, 18eleqtrrd 2276 . . . . . 6  |-  ( ph  ->  N  e.  ( ZZ>= `  ( ( M  - 
1 )  +  1 ) ) )
20 eluzp1m1 9642 . . . . . 6  |-  ( ( ( M  -  1 )  e.  ZZ  /\  N  e.  ( ZZ>= `  ( ( M  - 
1 )  +  1 ) ) )  -> 
( N  -  1 )  e.  ( ZZ>= `  ( M  -  1
) ) )
2115, 19, 20syl2anc 411 . . . . 5  |-  ( ph  ->  ( N  -  1 )  e.  ( ZZ>= `  ( M  -  1
) ) )
22 fzsuc2 10171 . . . . 5  |-  ( ( M  e.  ZZ  /\  ( N  -  1
)  e.  ( ZZ>= `  ( M  -  1
) ) )  -> 
( M ... (
( N  -  1 )  +  1 ) )  =  ( ( M ... ( N  -  1 ) )  u.  { ( ( N  -  1 )  +  1 ) } ) )
2313, 21, 22syl2anc 411 . . . 4  |-  ( ph  ->  ( M ... (
( N  -  1 )  +  1 ) )  =  ( ( M ... ( N  -  1 ) )  u.  { ( ( N  -  1 )  +  1 ) } ) )
247oveq2d 5941 . . . 4  |-  ( ph  ->  ( M ... (
( N  -  1 )  +  1 ) )  =  ( M ... N ) )
257sneqd 3636 . . . . 5  |-  ( ph  ->  { ( ( N  -  1 )  +  1 ) }  =  { N } )
2625uneq2d 3318 . . . 4  |-  ( ph  ->  ( ( M ... ( N  -  1
) )  u.  {
( ( N  - 
1 )  +  1 ) } )  =  ( ( M ... ( N  -  1
) )  u.  { N } ) )
2723, 24, 263eqtr3d 2237 . . 3  |-  ( ph  ->  ( M ... N
)  =  ( ( M ... ( N  -  1 ) )  u.  { N }
) )
2813, 4fzfigd 10540 . . 3  |-  ( ph  ->  ( M ... N
)  e.  Fin )
29 elfzelz 10117 . . . . . 6  |-  ( j  e.  ( M ... N )  ->  j  e.  ZZ )
3029adantl 277 . . . . 5  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  j  e.  ZZ )
3113adantr 276 . . . . 5  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  M  e.  ZZ )
324adantr 276 . . . . . 6  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  N  e.  ZZ )
33 peano2zm 9381 . . . . . 6  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
3432, 33syl 14 . . . . 5  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  ( N  -  1 )  e.  ZZ )
35 fzdcel 10132 . . . . 5  |-  ( ( j  e.  ZZ  /\  M  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  -> DECID  j  e.  ( M ... ( N  -  1 ) ) )
3630, 31, 34, 35syl3anc 1249 . . . 4  |-  ( (
ph  /\  j  e.  ( M ... N ) )  -> DECID  j  e.  ( M ... ( N  - 
1 ) ) )
3736ralrimiva 2570 . . 3  |-  ( ph  ->  A. j  e.  ( M ... N )DECID  j  e.  ( M ... ( N  -  1
) ) )
38 fprodm1.2 . . 3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
3911, 27, 28, 37, 38fprodsplitdc 11778 . 2  |-  ( ph  ->  prod_ k  e.  ( M ... N ) A  =  ( prod_
k  e.  ( M ... ( N  - 
1 ) ) A  x.  prod_ k  e.  { N } A ) )
40 fprodm1.3 . . . . . 6  |-  ( k  =  N  ->  A  =  B )
4140eleq1d 2265 . . . . 5  |-  ( k  =  N  ->  ( A  e.  CC  <->  B  e.  CC ) )
4238ralrimiva 2570 . . . . 5  |-  ( ph  ->  A. k  e.  ( M ... N ) A  e.  CC )
43 eluzfz2 10124 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
442, 43syl 14 . . . . 5  |-  ( ph  ->  N  e.  ( M ... N ) )
4541, 42, 44rspcdva 2873 . . . 4  |-  ( ph  ->  B  e.  CC )
4640prodsn 11775 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  B  e.  CC )  ->  prod_ k  e.  { N } A  =  B )
472, 45, 46syl2anc 411 . . 3  |-  ( ph  ->  prod_ k  e.  { N } A  =  B )
4847oveq2d 5941 . 2  |-  ( ph  ->  ( prod_ k  e.  ( M ... ( N  -  1 ) ) A  x.  prod_ k  e.  { N } A
)  =  ( prod_
k  e.  ( M ... ( N  - 
1 ) ) A  x.  B ) )
4939, 48eqtrd 2229 1  |-  ( ph  ->  prod_ k  e.  ( M ... N ) A  =  ( prod_
k  e.  ( M ... ( N  - 
1 ) ) A  x.  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104  DECID wdc 835    = wceq 1364    e. wcel 2167    u. cun 3155    i^i cin 3156   (/)c0 3451   {csn 3623   ` cfv 5259  (class class class)co 5925   CCcc 7894   1c1 7897    + caddc 7899    x. cmul 7901    - cmin 8214   ZZcz 9343   ZZ>=cuz 9618   ...cfz 10100   prod_cprod 11732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-proddc 11733
This theorem is referenced by:  fprodp1  11782  fprodm1s  11783
  Copyright terms: Public domain W3C validator