ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodm1 Unicode version

Theorem fprodm1 11942
Description: Separate out the last term in a finite product. (Contributed by Scott Fenton, 16-Dec-2017.)
Hypotheses
Ref Expression
fprodm1.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
fprodm1.2  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
fprodm1.3  |-  ( k  =  N  ->  A  =  B )
Assertion
Ref Expression
fprodm1  |-  ( ph  ->  prod_ k  e.  ( M ... N ) A  =  ( prod_
k  e.  ( M ... ( N  - 
1 ) ) A  x.  B ) )
Distinct variable groups:    B, k    ph, k    k, M    k, N
Allowed substitution hint:    A( k)

Proof of Theorem fprodm1
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 fzp1nel 10228 . . . . 5  |-  -.  (
( N  -  1 )  +  1 )  e.  ( M ... ( N  -  1
) )
2 fprodm1.1 . . . . . . . . 9  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
3 eluzelz 9659 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
42, 3syl 14 . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
54zcnd 9498 . . . . . . 7  |-  ( ph  ->  N  e.  CC )
6 1cnd 8090 . . . . . . 7  |-  ( ph  ->  1  e.  CC )
75, 6npcand 8389 . . . . . 6  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  =  N )
87eleq1d 2274 . . . . 5  |-  ( ph  ->  ( ( ( N  -  1 )  +  1 )  e.  ( M ... ( N  -  1 ) )  <-> 
N  e.  ( M ... ( N  - 
1 ) ) ) )
91, 8mtbii 676 . . . 4  |-  ( ph  ->  -.  N  e.  ( M ... ( N  -  1 ) ) )
10 disjsn 3695 . . . 4  |-  ( ( ( M ... ( N  -  1 ) )  i^i  { N } )  =  (/)  <->  -.  N  e.  ( M ... ( N  -  1 ) ) )
119, 10sylibr 134 . . 3  |-  ( ph  ->  ( ( M ... ( N  -  1
) )  i^i  { N } )  =  (/) )
12 eluzel2 9655 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
132, 12syl 14 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
14 peano2zm 9412 . . . . . . 7  |-  ( M  e.  ZZ  ->  ( M  -  1 )  e.  ZZ )
1513, 14syl 14 . . . . . 6  |-  ( ph  ->  ( M  -  1 )  e.  ZZ )
1613zcnd 9498 . . . . . . . . 9  |-  ( ph  ->  M  e.  CC )
1716, 6npcand 8389 . . . . . . . 8  |-  ( ph  ->  ( ( M  - 
1 )  +  1 )  =  M )
1817fveq2d 5582 . . . . . . 7  |-  ( ph  ->  ( ZZ>= `  ( ( M  -  1 )  +  1 ) )  =  ( ZZ>= `  M
) )
192, 18eleqtrrd 2285 . . . . . 6  |-  ( ph  ->  N  e.  ( ZZ>= `  ( ( M  - 
1 )  +  1 ) ) )
20 eluzp1m1 9674 . . . . . 6  |-  ( ( ( M  -  1 )  e.  ZZ  /\  N  e.  ( ZZ>= `  ( ( M  - 
1 )  +  1 ) ) )  -> 
( N  -  1 )  e.  ( ZZ>= `  ( M  -  1
) ) )
2115, 19, 20syl2anc 411 . . . . 5  |-  ( ph  ->  ( N  -  1 )  e.  ( ZZ>= `  ( M  -  1
) ) )
22 fzsuc2 10203 . . . . 5  |-  ( ( M  e.  ZZ  /\  ( N  -  1
)  e.  ( ZZ>= `  ( M  -  1
) ) )  -> 
( M ... (
( N  -  1 )  +  1 ) )  =  ( ( M ... ( N  -  1 ) )  u.  { ( ( N  -  1 )  +  1 ) } ) )
2313, 21, 22syl2anc 411 . . . 4  |-  ( ph  ->  ( M ... (
( N  -  1 )  +  1 ) )  =  ( ( M ... ( N  -  1 ) )  u.  { ( ( N  -  1 )  +  1 ) } ) )
247oveq2d 5962 . . . 4  |-  ( ph  ->  ( M ... (
( N  -  1 )  +  1 ) )  =  ( M ... N ) )
257sneqd 3646 . . . . 5  |-  ( ph  ->  { ( ( N  -  1 )  +  1 ) }  =  { N } )
2625uneq2d 3327 . . . 4  |-  ( ph  ->  ( ( M ... ( N  -  1
) )  u.  {
( ( N  - 
1 )  +  1 ) } )  =  ( ( M ... ( N  -  1
) )  u.  { N } ) )
2723, 24, 263eqtr3d 2246 . . 3  |-  ( ph  ->  ( M ... N
)  =  ( ( M ... ( N  -  1 ) )  u.  { N }
) )
2813, 4fzfigd 10578 . . 3  |-  ( ph  ->  ( M ... N
)  e.  Fin )
29 elfzelz 10149 . . . . . 6  |-  ( j  e.  ( M ... N )  ->  j  e.  ZZ )
3029adantl 277 . . . . 5  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  j  e.  ZZ )
3113adantr 276 . . . . 5  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  M  e.  ZZ )
324adantr 276 . . . . . 6  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  N  e.  ZZ )
33 peano2zm 9412 . . . . . 6  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
3432, 33syl 14 . . . . 5  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  ( N  -  1 )  e.  ZZ )
35 fzdcel 10164 . . . . 5  |-  ( ( j  e.  ZZ  /\  M  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  -> DECID  j  e.  ( M ... ( N  -  1 ) ) )
3630, 31, 34, 35syl3anc 1250 . . . 4  |-  ( (
ph  /\  j  e.  ( M ... N ) )  -> DECID  j  e.  ( M ... ( N  - 
1 ) ) )
3736ralrimiva 2579 . . 3  |-  ( ph  ->  A. j  e.  ( M ... N )DECID  j  e.  ( M ... ( N  -  1
) ) )
38 fprodm1.2 . . 3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
3911, 27, 28, 37, 38fprodsplitdc 11940 . 2  |-  ( ph  ->  prod_ k  e.  ( M ... N ) A  =  ( prod_
k  e.  ( M ... ( N  - 
1 ) ) A  x.  prod_ k  e.  { N } A ) )
40 fprodm1.3 . . . . . 6  |-  ( k  =  N  ->  A  =  B )
4140eleq1d 2274 . . . . 5  |-  ( k  =  N  ->  ( A  e.  CC  <->  B  e.  CC ) )
4238ralrimiva 2579 . . . . 5  |-  ( ph  ->  A. k  e.  ( M ... N ) A  e.  CC )
43 eluzfz2 10156 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
442, 43syl 14 . . . . 5  |-  ( ph  ->  N  e.  ( M ... N ) )
4541, 42, 44rspcdva 2882 . . . 4  |-  ( ph  ->  B  e.  CC )
4640prodsn 11937 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  B  e.  CC )  ->  prod_ k  e.  { N } A  =  B )
472, 45, 46syl2anc 411 . . 3  |-  ( ph  ->  prod_ k  e.  { N } A  =  B )
4847oveq2d 5962 . 2  |-  ( ph  ->  ( prod_ k  e.  ( M ... ( N  -  1 ) ) A  x.  prod_ k  e.  { N } A
)  =  ( prod_
k  e.  ( M ... ( N  - 
1 ) ) A  x.  B ) )
4939, 48eqtrd 2238 1  |-  ( ph  ->  prod_ k  e.  ( M ... N ) A  =  ( prod_
k  e.  ( M ... ( N  - 
1 ) ) A  x.  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104  DECID wdc 836    = wceq 1373    e. wcel 2176    u. cun 3164    i^i cin 3165   (/)c0 3460   {csn 3633   ` cfv 5272  (class class class)co 5946   CCcc 7925   1c1 7928    + caddc 7930    x. cmul 7932    - cmin 8245   ZZcz 9374   ZZ>=cuz 9650   ...cfz 10132   prod_cprod 11894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046  ax-caucvg 8047
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-isom 5281  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-irdg 6458  df-frec 6479  df-1o 6504  df-oadd 6508  df-er 6622  df-en 6830  df-dom 6831  df-fin 6832  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-n0 9298  df-z 9375  df-uz 9651  df-q 9743  df-rp 9778  df-fz 10133  df-fzo 10267  df-seqfrec 10595  df-exp 10686  df-ihash 10923  df-cj 11186  df-re 11187  df-im 11188  df-rsqrt 11342  df-abs 11343  df-clim 11623  df-proddc 11895
This theorem is referenced by:  fprodp1  11944  fprodm1s  11945
  Copyright terms: Public domain W3C validator