ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodm1 Unicode version

Theorem fprodm1 11477
Description: Separate out the last term in a finite product. (Contributed by Scott Fenton, 16-Dec-2017.)
Hypotheses
Ref Expression
fprodm1.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
fprodm1.2  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
fprodm1.3  |-  ( k  =  N  ->  A  =  B )
Assertion
Ref Expression
fprodm1  |-  ( ph  ->  prod_ k  e.  ( M ... N ) A  =  ( prod_
k  e.  ( M ... ( N  - 
1 ) ) A  x.  B ) )
Distinct variable groups:    B, k    ph, k    k, M    k, N
Allowed substitution hint:    A( k)

Proof of Theorem fprodm1
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 fzp1nel 9988 . . . . 5  |-  -.  (
( N  -  1 )  +  1 )  e.  ( M ... ( N  -  1
) )
2 fprodm1.1 . . . . . . . . 9  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
3 eluzelz 9431 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
42, 3syl 14 . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
54zcnd 9270 . . . . . . 7  |-  ( ph  ->  N  e.  CC )
6 1cnd 7877 . . . . . . 7  |-  ( ph  ->  1  e.  CC )
75, 6npcand 8173 . . . . . 6  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  =  N )
87eleq1d 2226 . . . . 5  |-  ( ph  ->  ( ( ( N  -  1 )  +  1 )  e.  ( M ... ( N  -  1 ) )  <-> 
N  e.  ( M ... ( N  - 
1 ) ) ) )
91, 8mtbii 664 . . . 4  |-  ( ph  ->  -.  N  e.  ( M ... ( N  -  1 ) ) )
10 disjsn 3621 . . . 4  |-  ( ( ( M ... ( N  -  1 ) )  i^i  { N } )  =  (/)  <->  -.  N  e.  ( M ... ( N  -  1 ) ) )
119, 10sylibr 133 . . 3  |-  ( ph  ->  ( ( M ... ( N  -  1
) )  i^i  { N } )  =  (/) )
12 eluzel2 9427 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
132, 12syl 14 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
14 peano2zm 9188 . . . . . . 7  |-  ( M  e.  ZZ  ->  ( M  -  1 )  e.  ZZ )
1513, 14syl 14 . . . . . 6  |-  ( ph  ->  ( M  -  1 )  e.  ZZ )
1613zcnd 9270 . . . . . . . . 9  |-  ( ph  ->  M  e.  CC )
1716, 6npcand 8173 . . . . . . . 8  |-  ( ph  ->  ( ( M  - 
1 )  +  1 )  =  M )
1817fveq2d 5469 . . . . . . 7  |-  ( ph  ->  ( ZZ>= `  ( ( M  -  1 )  +  1 ) )  =  ( ZZ>= `  M
) )
192, 18eleqtrrd 2237 . . . . . 6  |-  ( ph  ->  N  e.  ( ZZ>= `  ( ( M  - 
1 )  +  1 ) ) )
20 eluzp1m1 9445 . . . . . 6  |-  ( ( ( M  -  1 )  e.  ZZ  /\  N  e.  ( ZZ>= `  ( ( M  - 
1 )  +  1 ) ) )  -> 
( N  -  1 )  e.  ( ZZ>= `  ( M  -  1
) ) )
2115, 19, 20syl2anc 409 . . . . 5  |-  ( ph  ->  ( N  -  1 )  e.  ( ZZ>= `  ( M  -  1
) ) )
22 fzsuc2 9963 . . . . 5  |-  ( ( M  e.  ZZ  /\  ( N  -  1
)  e.  ( ZZ>= `  ( M  -  1
) ) )  -> 
( M ... (
( N  -  1 )  +  1 ) )  =  ( ( M ... ( N  -  1 ) )  u.  { ( ( N  -  1 )  +  1 ) } ) )
2313, 21, 22syl2anc 409 . . . 4  |-  ( ph  ->  ( M ... (
( N  -  1 )  +  1 ) )  =  ( ( M ... ( N  -  1 ) )  u.  { ( ( N  -  1 )  +  1 ) } ) )
247oveq2d 5834 . . . 4  |-  ( ph  ->  ( M ... (
( N  -  1 )  +  1 ) )  =  ( M ... N ) )
257sneqd 3573 . . . . 5  |-  ( ph  ->  { ( ( N  -  1 )  +  1 ) }  =  { N } )
2625uneq2d 3261 . . . 4  |-  ( ph  ->  ( ( M ... ( N  -  1
) )  u.  {
( ( N  - 
1 )  +  1 ) } )  =  ( ( M ... ( N  -  1
) )  u.  { N } ) )
2723, 24, 263eqtr3d 2198 . . 3  |-  ( ph  ->  ( M ... N
)  =  ( ( M ... ( N  -  1 ) )  u.  { N }
) )
2813, 4fzfigd 10312 . . 3  |-  ( ph  ->  ( M ... N
)  e.  Fin )
29 elfzelz 9910 . . . . . 6  |-  ( j  e.  ( M ... N )  ->  j  e.  ZZ )
3029adantl 275 . . . . 5  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  j  e.  ZZ )
3113adantr 274 . . . . 5  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  M  e.  ZZ )
324adantr 274 . . . . . 6  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  N  e.  ZZ )
33 peano2zm 9188 . . . . . 6  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
3432, 33syl 14 . . . . 5  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  ( N  -  1 )  e.  ZZ )
35 fzdcel 9924 . . . . 5  |-  ( ( j  e.  ZZ  /\  M  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  -> DECID  j  e.  ( M ... ( N  -  1 ) ) )
3630, 31, 34, 35syl3anc 1220 . . . 4  |-  ( (
ph  /\  j  e.  ( M ... N ) )  -> DECID  j  e.  ( M ... ( N  - 
1 ) ) )
3736ralrimiva 2530 . . 3  |-  ( ph  ->  A. j  e.  ( M ... N )DECID  j  e.  ( M ... ( N  -  1
) ) )
38 fprodm1.2 . . 3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
3911, 27, 28, 37, 38fprodsplitdc 11475 . 2  |-  ( ph  ->  prod_ k  e.  ( M ... N ) A  =  ( prod_
k  e.  ( M ... ( N  - 
1 ) ) A  x.  prod_ k  e.  { N } A ) )
40 fprodm1.3 . . . . . 6  |-  ( k  =  N  ->  A  =  B )
4140eleq1d 2226 . . . . 5  |-  ( k  =  N  ->  ( A  e.  CC  <->  B  e.  CC ) )
4238ralrimiva 2530 . . . . 5  |-  ( ph  ->  A. k  e.  ( M ... N ) A  e.  CC )
43 eluzfz2 9916 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
442, 43syl 14 . . . . 5  |-  ( ph  ->  N  e.  ( M ... N ) )
4541, 42, 44rspcdva 2821 . . . 4  |-  ( ph  ->  B  e.  CC )
4640prodsn 11472 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  B  e.  CC )  ->  prod_ k  e.  { N } A  =  B )
472, 45, 46syl2anc 409 . . 3  |-  ( ph  ->  prod_ k  e.  { N } A  =  B )
4847oveq2d 5834 . 2  |-  ( ph  ->  ( prod_ k  e.  ( M ... ( N  -  1 ) ) A  x.  prod_ k  e.  { N } A
)  =  ( prod_
k  e.  ( M ... ( N  - 
1 ) ) A  x.  B ) )
4939, 48eqtrd 2190 1  |-  ( ph  ->  prod_ k  e.  ( M ... N ) A  =  ( prod_
k  e.  ( M ... ( N  - 
1 ) ) A  x.  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103  DECID wdc 820    = wceq 1335    e. wcel 2128    u. cun 3100    i^i cin 3101   (/)c0 3394   {csn 3560   ` cfv 5167  (class class class)co 5818   CCcc 7713   1c1 7716    + caddc 7718    x. cmul 7720    - cmin 8029   ZZcz 9150   ZZ>=cuz 9422   ...cfz 9894   prod_cprod 11429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545  ax-cnex 7806  ax-resscn 7807  ax-1cn 7808  ax-1re 7809  ax-icn 7810  ax-addcl 7811  ax-addrcl 7812  ax-mulcl 7813  ax-mulrcl 7814  ax-addcom 7815  ax-mulcom 7816  ax-addass 7817  ax-mulass 7818  ax-distr 7819  ax-i2m1 7820  ax-0lt1 7821  ax-1rid 7822  ax-0id 7823  ax-rnegex 7824  ax-precex 7825  ax-cnre 7826  ax-pre-ltirr 7827  ax-pre-ltwlin 7828  ax-pre-lttrn 7829  ax-pre-apti 7830  ax-pre-ltadd 7831  ax-pre-mulgt0 7832  ax-pre-mulext 7833  ax-arch 7834  ax-caucvg 7835
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4252  df-po 4255  df-iso 4256  df-iord 4325  df-on 4327  df-ilim 4328  df-suc 4330  df-iom 4548  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-isom 5176  df-riota 5774  df-ov 5821  df-oprab 5822  df-mpo 5823  df-1st 6082  df-2nd 6083  df-recs 6246  df-irdg 6311  df-frec 6332  df-1o 6357  df-oadd 6361  df-er 6473  df-en 6679  df-dom 6680  df-fin 6681  df-pnf 7897  df-mnf 7898  df-xr 7899  df-ltxr 7900  df-le 7901  df-sub 8031  df-neg 8032  df-reap 8433  df-ap 8440  df-div 8529  df-inn 8817  df-2 8875  df-3 8876  df-4 8877  df-n0 9074  df-z 9151  df-uz 9423  df-q 9511  df-rp 9543  df-fz 9895  df-fzo 10024  df-seqfrec 10327  df-exp 10401  df-ihash 10632  df-cj 10724  df-re 10725  df-im 10726  df-rsqrt 10880  df-abs 10881  df-clim 11158  df-proddc 11430
This theorem is referenced by:  fprodp1  11479  fprodm1s  11480
  Copyright terms: Public domain W3C validator