ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodm1 Unicode version

Theorem fprodm1 12109
Description: Separate out the last term in a finite product. (Contributed by Scott Fenton, 16-Dec-2017.)
Hypotheses
Ref Expression
fprodm1.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
fprodm1.2  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
fprodm1.3  |-  ( k  =  N  ->  A  =  B )
Assertion
Ref Expression
fprodm1  |-  ( ph  ->  prod_ k  e.  ( M ... N ) A  =  ( prod_
k  e.  ( M ... ( N  - 
1 ) ) A  x.  B ) )
Distinct variable groups:    B, k    ph, k    k, M    k, N
Allowed substitution hint:    A( k)

Proof of Theorem fprodm1
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 fzp1nel 10300 . . . . 5  |-  -.  (
( N  -  1 )  +  1 )  e.  ( M ... ( N  -  1
) )
2 fprodm1.1 . . . . . . . . 9  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
3 eluzelz 9731 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
42, 3syl 14 . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
54zcnd 9570 . . . . . . 7  |-  ( ph  ->  N  e.  CC )
6 1cnd 8162 . . . . . . 7  |-  ( ph  ->  1  e.  CC )
75, 6npcand 8461 . . . . . 6  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  =  N )
87eleq1d 2298 . . . . 5  |-  ( ph  ->  ( ( ( N  -  1 )  +  1 )  e.  ( M ... ( N  -  1 ) )  <-> 
N  e.  ( M ... ( N  - 
1 ) ) ) )
91, 8mtbii 678 . . . 4  |-  ( ph  ->  -.  N  e.  ( M ... ( N  -  1 ) ) )
10 disjsn 3728 . . . 4  |-  ( ( ( M ... ( N  -  1 ) )  i^i  { N } )  =  (/)  <->  -.  N  e.  ( M ... ( N  -  1 ) ) )
119, 10sylibr 134 . . 3  |-  ( ph  ->  ( ( M ... ( N  -  1
) )  i^i  { N } )  =  (/) )
12 eluzel2 9727 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
132, 12syl 14 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
14 peano2zm 9484 . . . . . . 7  |-  ( M  e.  ZZ  ->  ( M  -  1 )  e.  ZZ )
1513, 14syl 14 . . . . . 6  |-  ( ph  ->  ( M  -  1 )  e.  ZZ )
1613zcnd 9570 . . . . . . . . 9  |-  ( ph  ->  M  e.  CC )
1716, 6npcand 8461 . . . . . . . 8  |-  ( ph  ->  ( ( M  - 
1 )  +  1 )  =  M )
1817fveq2d 5631 . . . . . . 7  |-  ( ph  ->  ( ZZ>= `  ( ( M  -  1 )  +  1 ) )  =  ( ZZ>= `  M
) )
192, 18eleqtrrd 2309 . . . . . 6  |-  ( ph  ->  N  e.  ( ZZ>= `  ( ( M  - 
1 )  +  1 ) ) )
20 eluzp1m1 9746 . . . . . 6  |-  ( ( ( M  -  1 )  e.  ZZ  /\  N  e.  ( ZZ>= `  ( ( M  - 
1 )  +  1 ) ) )  -> 
( N  -  1 )  e.  ( ZZ>= `  ( M  -  1
) ) )
2115, 19, 20syl2anc 411 . . . . 5  |-  ( ph  ->  ( N  -  1 )  e.  ( ZZ>= `  ( M  -  1
) ) )
22 fzsuc2 10275 . . . . 5  |-  ( ( M  e.  ZZ  /\  ( N  -  1
)  e.  ( ZZ>= `  ( M  -  1
) ) )  -> 
( M ... (
( N  -  1 )  +  1 ) )  =  ( ( M ... ( N  -  1 ) )  u.  { ( ( N  -  1 )  +  1 ) } ) )
2313, 21, 22syl2anc 411 . . . 4  |-  ( ph  ->  ( M ... (
( N  -  1 )  +  1 ) )  =  ( ( M ... ( N  -  1 ) )  u.  { ( ( N  -  1 )  +  1 ) } ) )
247oveq2d 6017 . . . 4  |-  ( ph  ->  ( M ... (
( N  -  1 )  +  1 ) )  =  ( M ... N ) )
257sneqd 3679 . . . . 5  |-  ( ph  ->  { ( ( N  -  1 )  +  1 ) }  =  { N } )
2625uneq2d 3358 . . . 4  |-  ( ph  ->  ( ( M ... ( N  -  1
) )  u.  {
( ( N  - 
1 )  +  1 ) } )  =  ( ( M ... ( N  -  1
) )  u.  { N } ) )
2723, 24, 263eqtr3d 2270 . . 3  |-  ( ph  ->  ( M ... N
)  =  ( ( M ... ( N  -  1 ) )  u.  { N }
) )
2813, 4fzfigd 10653 . . 3  |-  ( ph  ->  ( M ... N
)  e.  Fin )
29 elfzelz 10221 . . . . . 6  |-  ( j  e.  ( M ... N )  ->  j  e.  ZZ )
3029adantl 277 . . . . 5  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  j  e.  ZZ )
3113adantr 276 . . . . 5  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  M  e.  ZZ )
324adantr 276 . . . . . 6  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  N  e.  ZZ )
33 peano2zm 9484 . . . . . 6  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
3432, 33syl 14 . . . . 5  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  ( N  -  1 )  e.  ZZ )
35 fzdcel 10236 . . . . 5  |-  ( ( j  e.  ZZ  /\  M  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  -> DECID  j  e.  ( M ... ( N  -  1 ) ) )
3630, 31, 34, 35syl3anc 1271 . . . 4  |-  ( (
ph  /\  j  e.  ( M ... N ) )  -> DECID  j  e.  ( M ... ( N  - 
1 ) ) )
3736ralrimiva 2603 . . 3  |-  ( ph  ->  A. j  e.  ( M ... N )DECID  j  e.  ( M ... ( N  -  1
) ) )
38 fprodm1.2 . . 3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
3911, 27, 28, 37, 38fprodsplitdc 12107 . 2  |-  ( ph  ->  prod_ k  e.  ( M ... N ) A  =  ( prod_
k  e.  ( M ... ( N  - 
1 ) ) A  x.  prod_ k  e.  { N } A ) )
40 fprodm1.3 . . . . . 6  |-  ( k  =  N  ->  A  =  B )
4140eleq1d 2298 . . . . 5  |-  ( k  =  N  ->  ( A  e.  CC  <->  B  e.  CC ) )
4238ralrimiva 2603 . . . . 5  |-  ( ph  ->  A. k  e.  ( M ... N ) A  e.  CC )
43 eluzfz2 10228 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
442, 43syl 14 . . . . 5  |-  ( ph  ->  N  e.  ( M ... N ) )
4541, 42, 44rspcdva 2912 . . . 4  |-  ( ph  ->  B  e.  CC )
4640prodsn 12104 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  B  e.  CC )  ->  prod_ k  e.  { N } A  =  B )
472, 45, 46syl2anc 411 . . 3  |-  ( ph  ->  prod_ k  e.  { N } A  =  B )
4847oveq2d 6017 . 2  |-  ( ph  ->  ( prod_ k  e.  ( M ... ( N  -  1 ) ) A  x.  prod_ k  e.  { N } A
)  =  ( prod_
k  e.  ( M ... ( N  - 
1 ) ) A  x.  B ) )
4939, 48eqtrd 2262 1  |-  ( ph  ->  prod_ k  e.  ( M ... N ) A  =  ( prod_
k  e.  ( M ... ( N  - 
1 ) ) A  x.  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104  DECID wdc 839    = wceq 1395    e. wcel 2200    u. cun 3195    i^i cin 3196   (/)c0 3491   {csn 3666   ` cfv 5318  (class class class)co 6001   CCcc 7997   1c1 8000    + caddc 8002    x. cmul 8004    - cmin 8317   ZZcz 9446   ZZ>=cuz 9722   ...cfz 10204   prod_cprod 12061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-frec 6537  df-1o 6562  df-oadd 6566  df-er 6680  df-en 6888  df-dom 6889  df-fin 6890  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-fz 10205  df-fzo 10339  df-seqfrec 10670  df-exp 10761  df-ihash 10998  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-clim 11790  df-proddc 12062
This theorem is referenced by:  fprodp1  12111  fprodm1s  12112
  Copyright terms: Public domain W3C validator