ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nndceq Unicode version

Theorem nndceq 6557
Description: Equality of natural numbers is decidable. Theorem 7.2.6 of [HoTT], p. (varies). For the specific case where  B is zero, see nndceq0 4654. (Contributed by Jim Kingdon, 31-Aug-2019.)
Assertion
Ref Expression
nndceq  |-  ( ( A  e.  om  /\  B  e.  om )  -> DECID  A  =  B )

Proof of Theorem nndceq
StepHypRef Expression
1 nntri3or 6551 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A
) )
2 elirr 4577 . . . . . . 7  |-  -.  A  e.  A
3 eleq2 2260 . . . . . . 7  |-  ( A  =  B  ->  ( A  e.  A  <->  A  e.  B ) )
42, 3mtbii 675 . . . . . 6  |-  ( A  =  B  ->  -.  A  e.  B )
54con2i 628 . . . . 5  |-  ( A  e.  B  ->  -.  A  =  B )
65olcd 735 . . . 4  |-  ( A  e.  B  ->  ( A  =  B  \/  -.  A  =  B
) )
7 orc 713 . . . 4  |-  ( A  =  B  ->  ( A  =  B  \/  -.  A  =  B
) )
8 elirr 4577 . . . . . . 7  |-  -.  B  e.  B
9 eleq2 2260 . . . . . . 7  |-  ( A  =  B  ->  ( B  e.  A  <->  B  e.  B ) )
108, 9mtbiri 676 . . . . . 6  |-  ( A  =  B  ->  -.  B  e.  A )
1110con2i 628 . . . . 5  |-  ( B  e.  A  ->  -.  A  =  B )
1211olcd 735 . . . 4  |-  ( B  e.  A  ->  ( A  =  B  \/  -.  A  =  B
) )
136, 7, 123jaoi 1314 . . 3  |-  ( ( A  e.  B  \/  A  =  B  \/  B  e.  A )  ->  ( A  =  B  \/  -.  A  =  B ) )
141, 13syl 14 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  =  B  \/  -.  A  =  B ) )
15 df-dc 836 . 2  |-  (DECID  A  =  B  <->  ( A  =  B  \/  -.  A  =  B ) )
1614, 15sylibr 134 1  |-  ( ( A  e.  om  /\  B  e.  om )  -> DECID  A  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    \/ w3o 979    = wceq 1364    e. wcel 2167   omcom 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840  df-int 3875  df-tr 4132  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627
This theorem is referenced by:  nndifsnid  6565  fidceq  6930  unsnfidcex  6981  unsnfidcel  6982  nninfwlporlemd  7238  nninfwlporlem  7239  nninfwlpoimlemg  7241  nninfwlpoimlemginf  7242  2onetap  7322  2omotaplemap  7324  enqdc  7428  nninfctlemfo  12207  xpscf  12990  nninfsellemdc  15654
  Copyright terms: Public domain W3C validator