ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nndceq Unicode version

Theorem nndceq 6467
Description: Equality of natural numbers is decidable. Theorem 7.2.6 of [HoTT], p. (varies). For the specific case where  B is zero, see nndceq0 4595. (Contributed by Jim Kingdon, 31-Aug-2019.)
Assertion
Ref Expression
nndceq  |-  ( ( A  e.  om  /\  B  e.  om )  -> DECID  A  =  B )

Proof of Theorem nndceq
StepHypRef Expression
1 nntri3or 6461 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A
) )
2 elirr 4518 . . . . . . 7  |-  -.  A  e.  A
3 eleq2 2230 . . . . . . 7  |-  ( A  =  B  ->  ( A  e.  A  <->  A  e.  B ) )
42, 3mtbii 664 . . . . . 6  |-  ( A  =  B  ->  -.  A  e.  B )
54con2i 617 . . . . 5  |-  ( A  e.  B  ->  -.  A  =  B )
65olcd 724 . . . 4  |-  ( A  e.  B  ->  ( A  =  B  \/  -.  A  =  B
) )
7 orc 702 . . . 4  |-  ( A  =  B  ->  ( A  =  B  \/  -.  A  =  B
) )
8 elirr 4518 . . . . . . 7  |-  -.  B  e.  B
9 eleq2 2230 . . . . . . 7  |-  ( A  =  B  ->  ( B  e.  A  <->  B  e.  B ) )
108, 9mtbiri 665 . . . . . 6  |-  ( A  =  B  ->  -.  B  e.  A )
1110con2i 617 . . . . 5  |-  ( B  e.  A  ->  -.  A  =  B )
1211olcd 724 . . . 4  |-  ( B  e.  A  ->  ( A  =  B  \/  -.  A  =  B
) )
136, 7, 123jaoi 1293 . . 3  |-  ( ( A  e.  B  \/  A  =  B  \/  B  e.  A )  ->  ( A  =  B  \/  -.  A  =  B ) )
141, 13syl 14 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  =  B  \/  -.  A  =  B ) )
15 df-dc 825 . 2  |-  (DECID  A  =  B  <->  ( A  =  B  \/  -.  A  =  B ) )
1614, 15sylibr 133 1  |-  ( ( A  e.  om  /\  B  e.  om )  -> DECID  A  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698  DECID wdc 824    \/ w3o 967    = wceq 1343    e. wcel 2136   omcom 4567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-uni 3790  df-int 3825  df-tr 4081  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568
This theorem is referenced by:  nndifsnid  6475  fidceq  6835  unsnfidcex  6885  unsnfidcel  6886  enqdc  7302  nninfsellemdc  13890
  Copyright terms: Public domain W3C validator