ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nndceq Unicode version

Theorem nndceq 6517
Description: Equality of natural numbers is decidable. Theorem 7.2.6 of [HoTT], p. (varies). For the specific case where  B is zero, see nndceq0 4631. (Contributed by Jim Kingdon, 31-Aug-2019.)
Assertion
Ref Expression
nndceq  |-  ( ( A  e.  om  /\  B  e.  om )  -> DECID  A  =  B )

Proof of Theorem nndceq
StepHypRef Expression
1 nntri3or 6511 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A
) )
2 elirr 4554 . . . . . . 7  |-  -.  A  e.  A
3 eleq2 2252 . . . . . . 7  |-  ( A  =  B  ->  ( A  e.  A  <->  A  e.  B ) )
42, 3mtbii 675 . . . . . 6  |-  ( A  =  B  ->  -.  A  e.  B )
54con2i 628 . . . . 5  |-  ( A  e.  B  ->  -.  A  =  B )
65olcd 735 . . . 4  |-  ( A  e.  B  ->  ( A  =  B  \/  -.  A  =  B
) )
7 orc 713 . . . 4  |-  ( A  =  B  ->  ( A  =  B  \/  -.  A  =  B
) )
8 elirr 4554 . . . . . . 7  |-  -.  B  e.  B
9 eleq2 2252 . . . . . . 7  |-  ( A  =  B  ->  ( B  e.  A  <->  B  e.  B ) )
108, 9mtbiri 676 . . . . . 6  |-  ( A  =  B  ->  -.  B  e.  A )
1110con2i 628 . . . . 5  |-  ( B  e.  A  ->  -.  A  =  B )
1211olcd 735 . . . 4  |-  ( B  e.  A  ->  ( A  =  B  \/  -.  A  =  B
) )
136, 7, 123jaoi 1313 . . 3  |-  ( ( A  e.  B  \/  A  =  B  \/  B  e.  A )  ->  ( A  =  B  \/  -.  A  =  B ) )
141, 13syl 14 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  =  B  \/  -.  A  =  B ) )
15 df-dc 836 . 2  |-  (DECID  A  =  B  <->  ( A  =  B  \/  -.  A  =  B ) )
1614, 15sylibr 134 1  |-  ( ( A  e.  om  /\  B  e.  om )  -> DECID  A  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    \/ w3o 978    = wceq 1363    e. wcel 2159   omcom 4603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-sep 4135  ax-nul 4143  ax-pow 4188  ax-pr 4223  ax-un 4447  ax-setind 4550  ax-iinf 4601
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ne 2360  df-ral 2472  df-rex 2473  df-v 2753  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-nul 3437  df-pw 3591  df-sn 3612  df-pr 3613  df-uni 3824  df-int 3859  df-tr 4116  df-iord 4380  df-on 4382  df-suc 4385  df-iom 4604
This theorem is referenced by:  nndifsnid  6525  fidceq  6886  unsnfidcex  6936  unsnfidcel  6937  nninfwlporlemd  7187  nninfwlporlem  7188  nninfwlpoimlemg  7190  nninfwlpoimlemginf  7191  2onetap  7271  2omotaplemap  7273  enqdc  7377  xpscf  12788  nninfsellemdc  15143
  Copyright terms: Public domain W3C validator