| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mtoi | Unicode version | ||
| Description: Modus tollens inference. (Contributed by NM, 5-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Sep-2012.) |
| Ref | Expression |
|---|---|
| mtoi.1 |
|
| mtoi.2 |
|
| Ref | Expression |
|---|---|
| mtoi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtoi.1 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | mtoi.2 |
. 2
| |
| 4 | 2, 3 | mtod 667 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 617 ax-in2 618 |
| This theorem is referenced by: mtbii 678 mtbiri 679 pwnss 4243 exmid1stab 4292 nsuceq0g 4509 abnex 4538 reg2exmidlema 4626 ordsuc 4655 onnmin 4660 ssnel 4661 ordtri2or2exmid 4663 ontri2orexmidim 4664 reg3exmidlemwe 4671 acexmidlemab 5995 reldmtpos 6399 dmtpos 6402 2pwuninelg 6429 onunsnss 7079 snon0 7102 nninfisol 7300 exmidomni 7309 pr2ne 7365 ltexprlemdisj 7793 recexprlemdisj 7817 caucvgprlemnkj 7853 caucvgprprlemnkltj 7876 caucvgprprlemnkeqj 7877 caucvgprprlemnjltk 7878 inelr 8731 rimul 8732 recgt0 8997 zfz1iso 11063 isprm2 12639 nprmdvds1 12662 divgcdodd 12665 coprm 12666 coseq0q4123 15508 lgsquad2lem2 15761 umgrnloop0 15917 umgrislfupgrenlem 15928 lfgrnloopen 15931 pwle2 16364 nninfalllem1 16374 nninfall 16375 nninfsellemqall 16381 |
| Copyright terms: Public domain | W3C validator |