| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mtoi | Unicode version | ||
| Description: Modus tollens inference. (Contributed by NM, 5-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Sep-2012.) |
| Ref | Expression |
|---|---|
| mtoi.1 |
|
| mtoi.2 |
|
| Ref | Expression |
|---|---|
| mtoi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtoi.1 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | mtoi.2 |
. 2
| |
| 4 | 2, 3 | mtod 665 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: mtbii 676 mtbiri 677 pwnss 4219 exmid1stab 4268 nsuceq0g 4483 abnex 4512 reg2exmidlema 4600 ordsuc 4629 onnmin 4634 ssnel 4635 ordtri2or2exmid 4637 ontri2orexmidim 4638 reg3exmidlemwe 4645 acexmidlemab 5961 reldmtpos 6362 dmtpos 6365 2pwuninelg 6392 onunsnss 7040 snon0 7063 nninfisol 7261 exmidomni 7270 pr2ne 7326 ltexprlemdisj 7754 recexprlemdisj 7778 caucvgprlemnkj 7814 caucvgprprlemnkltj 7837 caucvgprprlemnkeqj 7838 caucvgprprlemnjltk 7839 inelr 8692 rimul 8693 recgt0 8958 zfz1iso 11023 isprm2 12554 nprmdvds1 12577 divgcdodd 12580 coprm 12581 coseq0q4123 15421 lgsquad2lem2 15674 umgrislfupgrenlem 15836 lfgrnloopen 15839 pwle2 16137 nninfalllem1 16147 nninfall 16148 nninfsellemqall 16154 |
| Copyright terms: Public domain | W3C validator |