| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mtoi | Unicode version | ||
| Description: Modus tollens inference. (Contributed by NM, 5-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Sep-2012.) |
| Ref | Expression |
|---|---|
| mtoi.1 |
|
| mtoi.2 |
|
| Ref | Expression |
|---|---|
| mtoi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtoi.1 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | mtoi.2 |
. 2
| |
| 4 | 2, 3 | mtod 665 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: mtbii 676 mtbiri 677 pwnss 4204 exmid1stab 4253 nsuceq0g 4466 abnex 4495 reg2exmidlema 4583 ordsuc 4612 onnmin 4617 ssnel 4618 ordtri2or2exmid 4620 ontri2orexmidim 4621 reg3exmidlemwe 4628 acexmidlemab 5940 reldmtpos 6341 dmtpos 6344 2pwuninelg 6371 onunsnss 7016 snon0 7039 nninfisol 7237 exmidomni 7246 pr2ne 7302 ltexprlemdisj 7721 recexprlemdisj 7745 caucvgprlemnkj 7781 caucvgprprlemnkltj 7804 caucvgprprlemnkeqj 7805 caucvgprprlemnjltk 7806 inelr 8659 rimul 8660 recgt0 8925 zfz1iso 10988 isprm2 12472 nprmdvds1 12495 divgcdodd 12498 coprm 12499 coseq0q4123 15339 lgsquad2lem2 15592 pwle2 15972 nninfalllem1 15982 nninfall 15983 nninfsellemqall 15989 |
| Copyright terms: Public domain | W3C validator |