![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mtoi | Unicode version |
Description: Modus tollens inference. (Contributed by NM, 5-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Sep-2012.) |
Ref | Expression |
---|---|
mtoi.1 |
![]() ![]() ![]() |
mtoi.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mtoi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtoi.1 |
. . 3
![]() ![]() ![]() | |
2 | 1 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | mtoi.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | mtod 635 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-in1 586 ax-in2 587 |
This theorem is referenced by: mtbii 646 mtbiri 647 pwnss 4043 nsuceq0g 4300 abnex 4328 reg2exmidlema 4409 ordsuc 4438 onnmin 4443 ssnel 4444 ordtri2or2exmid 4446 reg3exmidlemwe 4453 acexmidlemab 5722 reldmtpos 6104 dmtpos 6107 2pwuninelg 6134 onunsnss 6758 snon0 6776 exmidomni 6964 pr2ne 6998 ltexprlemdisj 7362 recexprlemdisj 7386 caucvgprlemnkj 7422 caucvgprprlemnkltj 7445 caucvgprprlemnkeqj 7446 caucvgprprlemnjltk 7447 inelr 8264 rimul 8265 recgt0 8518 zfz1iso 10477 isprm2 11644 nprmdvds1 11666 divgcdodd 11667 coprm 11668 pwle2 12885 exmid1stab 12887 nninfalllem1 12895 nninfall 12896 nninfsellemqall 12903 |
Copyright terms: Public domain | W3C validator |