| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mtoi | Unicode version | ||
| Description: Modus tollens inference. (Contributed by NM, 5-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Sep-2012.) |
| Ref | Expression |
|---|---|
| mtoi.1 |
|
| mtoi.2 |
|
| Ref | Expression |
|---|---|
| mtoi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtoi.1 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | mtoi.2 |
. 2
| |
| 4 | 2, 3 | mtod 664 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: mtbii 675 mtbiri 676 pwnss 4193 exmid1stab 4242 nsuceq0g 4454 abnex 4483 reg2exmidlema 4571 ordsuc 4600 onnmin 4605 ssnel 4606 ordtri2or2exmid 4608 ontri2orexmidim 4609 reg3exmidlemwe 4616 acexmidlemab 5919 reldmtpos 6320 dmtpos 6323 2pwuninelg 6350 onunsnss 6987 snon0 7010 nninfisol 7208 exmidomni 7217 pr2ne 7271 ltexprlemdisj 7690 recexprlemdisj 7714 caucvgprlemnkj 7750 caucvgprprlemnkltj 7773 caucvgprprlemnkeqj 7774 caucvgprprlemnjltk 7775 inelr 8628 rimul 8629 recgt0 8894 zfz1iso 10950 isprm2 12310 nprmdvds1 12333 divgcdodd 12336 coprm 12337 coseq0q4123 15154 lgsquad2lem2 15407 pwle2 15729 nninfalllem1 15739 nninfall 15740 nninfsellemqall 15746 |
| Copyright terms: Public domain | W3C validator |