![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mtoi | Unicode version |
Description: Modus tollens inference. (Contributed by NM, 5-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Sep-2012.) |
Ref | Expression |
---|---|
mtoi.1 |
![]() ![]() ![]() |
mtoi.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mtoi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtoi.1 |
. . 3
![]() ![]() ![]() | |
2 | 1 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | mtoi.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | mtod 663 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 614 ax-in2 615 |
This theorem is referenced by: mtbii 674 mtbiri 675 pwnss 4161 exmid1stab 4210 nsuceq0g 4420 abnex 4449 reg2exmidlema 4535 ordsuc 4564 onnmin 4569 ssnel 4570 ordtri2or2exmid 4572 ontri2orexmidim 4573 reg3exmidlemwe 4580 acexmidlemab 5871 reldmtpos 6256 dmtpos 6259 2pwuninelg 6286 onunsnss 6918 snon0 6937 nninfisol 7133 exmidomni 7142 pr2ne 7193 ltexprlemdisj 7607 recexprlemdisj 7631 caucvgprlemnkj 7667 caucvgprprlemnkltj 7690 caucvgprprlemnkeqj 7691 caucvgprprlemnjltk 7692 inelr 8543 rimul 8544 recgt0 8809 zfz1iso 10823 isprm2 12119 nprmdvds1 12142 divgcdodd 12145 coprm 12146 coseq0q4123 14294 pwle2 14787 nninfalllem1 14796 nninfall 14797 nninfsellemqall 14803 |
Copyright terms: Public domain | W3C validator |