ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nntri3 Unicode version

Theorem nntri3 6473
Description: A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 15-May-2020.)
Assertion
Ref Expression
nntri3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  =  B  <-> 
( -.  A  e.  B  /\  -.  B  e.  A ) ) )

Proof of Theorem nntri3
StepHypRef Expression
1 elirr 4523 . . . . . 6  |-  -.  A  e.  A
2 eleq2 2234 . . . . . 6  |-  ( A  =  B  ->  ( A  e.  A  <->  A  e.  B ) )
31, 2mtbii 669 . . . . 5  |-  ( A  =  B  ->  -.  A  e.  B )
43con2i 622 . . . 4  |-  ( A  e.  B  ->  -.  A  =  B )
54adantl 275 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  e.  B
)  ->  -.  A  =  B )
6 simpl 108 . . . . 5  |-  ( ( -.  A  e.  B  /\  -.  B  e.  A
)  ->  -.  A  e.  B )
76con2i 622 . . . 4  |-  ( A  e.  B  ->  -.  ( -.  A  e.  B  /\  -.  B  e.  A ) )
87adantl 275 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  e.  B
)  ->  -.  ( -.  A  e.  B  /\  -.  B  e.  A
) )
95, 82falsed 697 . 2  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  e.  B
)  ->  ( A  =  B  <->  ( -.  A  e.  B  /\  -.  B  e.  A ) ) )
10 simpr 109 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  =  B
)  ->  A  =  B )
11 eleq1 2233 . . . . . 6  |-  ( A  =  B  ->  ( A  e.  A  <->  B  e.  A ) )
121, 11mtbii 669 . . . . 5  |-  ( A  =  B  ->  -.  B  e.  A )
133, 12jca 304 . . . 4  |-  ( A  =  B  ->  ( -.  A  e.  B  /\  -.  B  e.  A
) )
1413adantl 275 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  =  B
)  ->  ( -.  A  e.  B  /\  -.  B  e.  A
) )
1510, 142thd 174 . 2  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  =  B
)  ->  ( A  =  B  <->  ( -.  A  e.  B  /\  -.  B  e.  A ) ) )
1612con2i 622 . . . 4  |-  ( B  e.  A  ->  -.  A  =  B )
1716adantl 275 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  B  e.  A
)  ->  -.  A  =  B )
18 simpr 109 . . . . 5  |-  ( ( -.  A  e.  B  /\  -.  B  e.  A
)  ->  -.  B  e.  A )
1918con2i 622 . . . 4  |-  ( B  e.  A  ->  -.  ( -.  A  e.  B  /\  -.  B  e.  A ) )
2019adantl 275 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  B  e.  A
)  ->  -.  ( -.  A  e.  B  /\  -.  B  e.  A
) )
2117, 202falsed 697 . 2  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  B  e.  A
)  ->  ( A  =  B  <->  ( -.  A  e.  B  /\  -.  B  e.  A ) ) )
22 nntri3or 6469 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A
) )
239, 15, 21, 22mpjao3dan 1302 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  =  B  <-> 
( -.  A  e.  B  /\  -.  B  e.  A ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   omcom 4572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-uni 3795  df-int 3830  df-tr 4086  df-iord 4349  df-on 4351  df-suc 4354  df-iom 4573
This theorem is referenced by:  frec2uzf1od  10349  nnti  13949
  Copyright terms: Public domain W3C validator