ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fac3 Unicode version

Theorem fac3 10036
Description: The factorial of 3. (Contributed by NM, 17-Mar-2005.)
Assertion
Ref Expression
fac3  |-  ( ! `
 3 )  =  6

Proof of Theorem fac3
StepHypRef Expression
1 df-3 8417 . . 3  |-  3  =  ( 2  +  1 )
21fveq2i 5271 . 2  |-  ( ! `
 3 )  =  ( ! `  (
2  +  1 ) )
3 2nn0 8623 . . 3  |-  2  e.  NN0
4 facp1 10034 . . 3  |-  ( 2  e.  NN0  ->  ( ! `
 ( 2  +  1 ) )  =  ( ( ! ` 
2 )  x.  (
2  +  1 ) ) )
53, 4ax-mp 7 . 2  |-  ( ! `
 ( 2  +  1 ) )  =  ( ( ! ` 
2 )  x.  (
2  +  1 ) )
6 fac2 10035 . . . 4  |-  ( ! `
 2 )  =  2
7 2p1e3 8483 . . . 4  |-  ( 2  +  1 )  =  3
86, 7oveq12i 5625 . . 3  |-  ( ( ! `  2 )  x.  ( 2  +  1 ) )  =  ( 2  x.  3 )
9 2cn 8428 . . . 4  |-  2  e.  CC
10 3cn 8432 . . . 4  |-  3  e.  CC
119, 10mulcomi 7438 . . 3  |-  ( 2  x.  3 )  =  ( 3  x.  2 )
12 3t2e6 8506 . . 3  |-  ( 3  x.  2 )  =  6
138, 11, 123eqtri 2109 . 2  |-  ( ( ! `  2 )  x.  ( 2  +  1 ) )  =  6
142, 5, 133eqtri 2109 1  |-  ( ! `
 3 )  =  6
Colors of variables: wff set class
Syntax hints:    = wceq 1287    e. wcel 1436   ` cfv 4981  (class class class)co 5613   1c1 7295    + caddc 7297    x. cmul 7299   2c2 8407   3c3 8408   6c6 8411   NN0cn0 8606   !cfa 10029
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3929  ax-sep 3932  ax-nul 3940  ax-pow 3984  ax-pr 4010  ax-un 4234  ax-setind 4326  ax-iinf 4376  ax-cnex 7380  ax-resscn 7381  ax-1cn 7382  ax-1re 7383  ax-icn 7384  ax-addcl 7385  ax-addrcl 7386  ax-mulcl 7387  ax-addcom 7389  ax-mulcom 7390  ax-addass 7391  ax-mulass 7392  ax-distr 7393  ax-i2m1 7394  ax-0lt1 7395  ax-1rid 7396  ax-0id 7397  ax-rnegex 7398  ax-cnre 7400  ax-pre-ltirr 7401  ax-pre-ltwlin 7402  ax-pre-lttrn 7403  ax-pre-ltadd 7405
This theorem depends on definitions:  df-bi 115  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-int 3672  df-iun 3715  df-br 3821  df-opab 3875  df-mpt 3876  df-tr 3912  df-id 4094  df-iord 4167  df-on 4169  df-ilim 4170  df-suc 4172  df-iom 4379  df-xp 4417  df-rel 4418  df-cnv 4419  df-co 4420  df-dm 4421  df-rn 4422  df-res 4423  df-ima 4424  df-iota 4946  df-fun 4983  df-fn 4984  df-f 4985  df-f1 4986  df-fo 4987  df-f1o 4988  df-fv 4989  df-riota 5569  df-ov 5616  df-oprab 5617  df-mpt2 5618  df-1st 5868  df-2nd 5869  df-recs 6024  df-frec 6110  df-pnf 7468  df-mnf 7469  df-xr 7470  df-ltxr 7471  df-le 7472  df-sub 7599  df-neg 7600  df-inn 8358  df-2 8416  df-3 8417  df-4 8418  df-5 8419  df-6 8420  df-n0 8607  df-z 8684  df-uz 8952  df-iseq 9780  df-fac 10030
This theorem is referenced by:  fac4  10037  4bc2eq6  10078
  Copyright terms: Public domain W3C validator