ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgsoddprmlem2 Unicode version

Theorem 2lgsoddprmlem2 15779
Description: Lemma 2 for 2lgsoddprm . (Contributed by AV, 19-Jul-2021.)
Assertion
Ref Expression
2lgsoddprmlem2  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8 ) )  -> 
( 2  ||  (
( ( N ^
2 )  -  1 )  /  8 )  <->  2  ||  ( ( ( R ^ 2 )  -  1 )  /  8 ) ) )

Proof of Theorem 2lgsoddprmlem2
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 8nn 9274 . . . . . 6  |-  8  e.  NN
2 nnq 9824 . . . . . 6  |-  ( 8  e.  NN  ->  8  e.  QQ )
31, 2ax-mp 5 . . . . 5  |-  8  e.  QQ
4 8pos 9209 . . . . 5  |-  0  <  8
5 eqcom 2231 . . . . . 6  |-  ( R  =  ( N  mod  8 )  <->  ( N  mod  8 )  =  R )
6 modqmuladdim 10584 . . . . . 6  |-  ( ( N  e.  ZZ  /\  8  e.  QQ  /\  0  <  8 )  ->  (
( N  mod  8
)  =  R  ->  E. k  e.  ZZ  N  =  ( (
k  x.  8 )  +  R ) ) )
75, 6biimtrid 152 . . . . 5  |-  ( ( N  e.  ZZ  /\  8  e.  QQ  /\  0  <  8 )  ->  ( R  =  ( N  mod  8 )  ->  E. k  e.  ZZ  N  =  ( ( k  x.  8 )  +  R ) ) )
83, 4, 7mp3an23 1363 . . . 4  |-  ( N  e.  ZZ  ->  ( R  =  ( N  mod  8 )  ->  E. k  e.  ZZ  N  =  ( ( k  x.  8 )  +  R ) ) )
98imp 124 . . 3  |-  ( ( N  e.  ZZ  /\  R  =  ( N  mod  8 ) )  ->  E. k  e.  ZZ  N  =  ( (
k  x.  8 )  +  R ) )
1093adant2 1040 . 2  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8 ) )  ->  E. k  e.  ZZ  N  =  ( (
k  x.  8 )  +  R ) )
11 zcn 9447 . . . . . . . 8  |-  ( k  e.  ZZ  ->  k  e.  CC )
12 8cn 9192 . . . . . . . . 9  |-  8  e.  CC
1312a1i 9 . . . . . . . 8  |-  ( k  e.  ZZ  ->  8  e.  CC )
1411, 13mulcomd 8164 . . . . . . 7  |-  ( k  e.  ZZ  ->  (
k  x.  8 )  =  ( 8  x.  k ) )
1514adantl 277 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\ 
-.  2  ||  N  /\  R  =  ( N  mod  8 ) )  /\  k  e.  ZZ )  ->  ( k  x.  8 )  =  ( 8  x.  k ) )
1615oveq1d 6015 . . . . 5  |-  ( ( ( N  e.  ZZ  /\ 
-.  2  ||  N  /\  R  =  ( N  mod  8 ) )  /\  k  e.  ZZ )  ->  ( ( k  x.  8 )  +  R )  =  ( ( 8  x.  k
)  +  R ) )
1716eqeq2d 2241 . . . 4  |-  ( ( ( N  e.  ZZ  /\ 
-.  2  ||  N  /\  R  =  ( N  mod  8 ) )  /\  k  e.  ZZ )  ->  ( N  =  ( ( k  x.  8 )  +  R
)  <->  N  =  (
( 8  x.  k
)  +  R ) ) )
18 simpr 110 . . . . . . . . 9  |-  ( ( ( N  e.  ZZ  /\ 
-.  2  ||  N  /\  R  =  ( N  mod  8 ) )  /\  k  e.  ZZ )  ->  k  e.  ZZ )
1918adantr 276 . . . . . . . 8  |-  ( ( ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8
) )  /\  k  e.  ZZ )  /\  N  =  ( ( 8  x.  k )  +  R ) )  -> 
k  e.  ZZ )
20 id 19 . . . . . . . . . . . . . 14  |-  ( N  e.  ZZ  ->  N  e.  ZZ )
211a1i 9 . . . . . . . . . . . . . 14  |-  ( N  e.  ZZ  ->  8  e.  NN )
2220, 21zmodcld 10562 . . . . . . . . . . . . 13  |-  ( N  e.  ZZ  ->  ( N  mod  8 )  e. 
NN0 )
2322nn0zd 9563 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  ( N  mod  8 )  e.  ZZ )
24233ad2ant1 1042 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8 ) )  -> 
( N  mod  8
)  e.  ZZ )
25 eleq1 2292 . . . . . . . . . . . 12  |-  ( R  =  ( N  mod  8 )  ->  ( R  e.  ZZ  <->  ( N  mod  8 )  e.  ZZ ) )
26253ad2ant3 1044 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8 ) )  -> 
( R  e.  ZZ  <->  ( N  mod  8 )  e.  ZZ ) )
2724, 26mpbird 167 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8 ) )  ->  R  e.  ZZ )
2827adantr 276 . . . . . . . . 9  |-  ( ( ( N  e.  ZZ  /\ 
-.  2  ||  N  /\  R  =  ( N  mod  8 ) )  /\  k  e.  ZZ )  ->  R  e.  ZZ )
2928adantr 276 . . . . . . . 8  |-  ( ( ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8
) )  /\  k  e.  ZZ )  /\  N  =  ( ( 8  x.  k )  +  R ) )  ->  R  e.  ZZ )
30 simpr 110 . . . . . . . 8  |-  ( ( ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8
) )  /\  k  e.  ZZ )  /\  N  =  ( ( 8  x.  k )  +  R ) )  ->  N  =  ( (
8  x.  k )  +  R ) )
31 2lgsoddprmlem1 15778 . . . . . . . 8  |-  ( ( k  e.  ZZ  /\  R  e.  ZZ  /\  N  =  ( ( 8  x.  k )  +  R ) )  -> 
( ( ( N ^ 2 )  - 
1 )  /  8
)  =  ( ( ( 8  x.  (
k ^ 2 ) )  +  ( 2  x.  ( k  x.  R ) ) )  +  ( ( ( R ^ 2 )  -  1 )  / 
8 ) ) )
3219, 29, 30, 31syl3anc 1271 . . . . . . 7  |-  ( ( ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8
) )  /\  k  e.  ZZ )  /\  N  =  ( ( 8  x.  k )  +  R ) )  -> 
( ( ( N ^ 2 )  - 
1 )  /  8
)  =  ( ( ( 8  x.  (
k ^ 2 ) )  +  ( 2  x.  ( k  x.  R ) ) )  +  ( ( ( R ^ 2 )  -  1 )  / 
8 ) ) )
3332breq2d 4094 . . . . . 6  |-  ( ( ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8
) )  /\  k  e.  ZZ )  /\  N  =  ( ( 8  x.  k )  +  R ) )  -> 
( 2  ||  (
( ( N ^
2 )  -  1 )  /  8 )  <->  2  ||  ( ( ( 8  x.  (
k ^ 2 ) )  +  ( 2  x.  ( k  x.  R ) ) )  +  ( ( ( R ^ 2 )  -  1 )  / 
8 ) ) ) )
34 2z 9470 . . . . . . 7  |-  2  e.  ZZ
35 simp1 1021 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8 ) )  ->  N  e.  ZZ )
361a1i 9 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8 ) )  -> 
8  e.  NN )
3735, 36zmodcld 10562 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8 ) )  -> 
( N  mod  8
)  e.  NN0 )
3837nn0red 9419 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8 ) )  -> 
( N  mod  8
)  e.  RR )
39 eleq1 2292 . . . . . . . . . . 11  |-  ( R  =  ( N  mod  8 )  ->  ( R  e.  RR  <->  ( N  mod  8 )  e.  RR ) )
40393ad2ant3 1044 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8 ) )  -> 
( R  e.  RR  <->  ( N  mod  8 )  e.  RR ) )
4138, 40mpbird 167 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8 ) )  ->  R  e.  RR )
42 resqcl 10824 . . . . . . . . . . 11  |-  ( R  e.  RR  ->  ( R ^ 2 )  e.  RR )
43 peano2rem 8409 . . . . . . . . . . 11  |-  ( ( R ^ 2 )  e.  RR  ->  (
( R ^ 2 )  -  1 )  e.  RR )
4442, 43syl 14 . . . . . . . . . 10  |-  ( R  e.  RR  ->  (
( R ^ 2 )  -  1 )  e.  RR )
45 8re 9191 . . . . . . . . . . 11  |-  8  e.  RR
4645a1i 9 . . . . . . . . . 10  |-  ( R  e.  RR  ->  8  e.  RR )
4745, 4gt0ap0ii 8771 . . . . . . . . . . 11  |-  8 #  0
4847a1i 9 . . . . . . . . . 10  |-  ( R  e.  RR  ->  8 #  0 )
4944, 46, 48redivclapd 8978 . . . . . . . . 9  |-  ( R  e.  RR  ->  (
( ( R ^
2 )  -  1 )  /  8 )  e.  RR )
5041, 49syl 14 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8 ) )  -> 
( ( ( R ^ 2 )  - 
1 )  /  8
)  e.  RR )
5150adantr 276 . . . . . . 7  |-  ( ( ( N  e.  ZZ  /\ 
-.  2  ||  N  /\  R  =  ( N  mod  8 ) )  /\  k  e.  ZZ )  ->  ( ( ( R ^ 2 )  -  1 )  / 
8 )  e.  RR )
52 eleq1 2292 . . . . . . . . . . . 12  |-  ( R  =  ( N  mod  8 )  ->  ( R  e.  NN0  <->  ( N  mod  8 )  e.  NN0 ) )
53523ad2ant3 1044 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8 ) )  -> 
( R  e.  NN0  <->  ( N  mod  8 )  e. 
NN0 ) )
5437, 53mpbird 167 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8 ) )  ->  R  e.  NN0 )
55 nn0z 9462 . . . . . . . . . 10  |-  ( R  e.  NN0  ->  R  e.  ZZ )
561nnzi 9463 . . . . . . . . . . . . . . 15  |-  8  e.  ZZ
5756a1i 9 . . . . . . . . . . . . . 14  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  8  e.  ZZ )
58 zsqcl 10827 . . . . . . . . . . . . . . 15  |-  ( k  e.  ZZ  ->  (
k ^ 2 )  e.  ZZ )
5958adantl 277 . . . . . . . . . . . . . 14  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  ( k ^ 2 )  e.  ZZ )
6057, 59zmulcld 9571 . . . . . . . . . . . . 13  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  ( 8  x.  (
k ^ 2 ) )  e.  ZZ )
6134a1i 9 . . . . . . . . . . . . . 14  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  2  e.  ZZ )
62 zmulcl 9496 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  ZZ  /\  R  e.  ZZ )  ->  ( k  x.  R
)  e.  ZZ )
6362ancoms 268 . . . . . . . . . . . . . 14  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  ( k  x.  R
)  e.  ZZ )
6461, 63zmulcld 9571 . . . . . . . . . . . . 13  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  ( 2  x.  (
k  x.  R ) )  e.  ZZ )
6560, 64zaddcld 9569 . . . . . . . . . . . 12  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( 8  x.  ( k ^ 2 ) )  +  ( 2  x.  ( k  x.  R ) ) )  e.  ZZ )
66 4z 9472 . . . . . . . . . . . . . . . . 17  |-  4  e.  ZZ
6766a1i 9 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  4  e.  ZZ )
6867, 59zmulcld 9571 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  ( 4  x.  (
k ^ 2 ) )  e.  ZZ )
6968, 63zaddcld 9569 . . . . . . . . . . . . . 14  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( 4  x.  ( k ^ 2 ) )  +  ( k  x.  R ) )  e.  ZZ )
70 dvdsmul1 12319 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  ZZ  /\  ( ( 4  x.  ( k ^ 2 ) )  +  ( k  x.  R ) )  e.  ZZ )  ->  2  ||  (
2  x.  ( ( 4  x.  ( k ^ 2 ) )  +  ( k  x.  R ) ) ) )
7134, 69, 70sylancr 414 . . . . . . . . . . . . 13  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  2  ||  ( 2  x.  ( ( 4  x.  ( k ^
2 ) )  +  ( k  x.  R
) ) ) )
72 4t2e8 9265 . . . . . . . . . . . . . . . . . . 19  |-  ( 4  x.  2 )  =  8
73 4cn 9184 . . . . . . . . . . . . . . . . . . . 20  |-  4  e.  CC
74 2cn 9177 . . . . . . . . . . . . . . . . . . . 20  |-  2  e.  CC
7573, 74mulcomi 8148 . . . . . . . . . . . . . . . . . . 19  |-  ( 4  x.  2 )  =  ( 2  x.  4 )
7672, 75eqtr3i 2252 . . . . . . . . . . . . . . . . . 18  |-  8  =  ( 2  x.  4 )
7776a1i 9 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  8  =  ( 2  x.  4 ) )
7877oveq1d 6015 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  ( 8  x.  (
k ^ 2 ) )  =  ( ( 2  x.  4 )  x.  ( k ^
2 ) ) )
7974a1i 9 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  2  e.  CC )
8073a1i 9 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  4  e.  CC )
8158zcnd 9566 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  ZZ  ->  (
k ^ 2 )  e.  CC )
8281adantl 277 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  ( k ^ 2 )  e.  CC )
8379, 80, 82mulassd 8166 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( 2  x.  4 )  x.  (
k ^ 2 ) )  =  ( 2  x.  ( 4  x.  ( k ^ 2 ) ) ) )
8478, 83eqtrd 2262 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  ( 8  x.  (
k ^ 2 ) )  =  ( 2  x.  ( 4  x.  ( k ^ 2 ) ) ) )
8584oveq1d 6015 . . . . . . . . . . . . . 14  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( 8  x.  ( k ^ 2 ) )  +  ( 2  x.  ( k  x.  R ) ) )  =  ( ( 2  x.  ( 4  x.  ( k ^
2 ) ) )  +  ( 2  x.  ( k  x.  R
) ) ) )
8668zcnd 9566 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  ( 4  x.  (
k ^ 2 ) )  e.  CC )
8762zcnd 9566 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  ZZ  /\  R  e.  ZZ )  ->  ( k  x.  R
)  e.  CC )
8887ancoms 268 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  ( k  x.  R
)  e.  CC )
8979, 86, 88adddid 8167 . . . . . . . . . . . . . 14  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  ( 2  x.  (
( 4  x.  (
k ^ 2 ) )  +  ( k  x.  R ) ) )  =  ( ( 2  x.  ( 4  x.  ( k ^
2 ) ) )  +  ( 2  x.  ( k  x.  R
) ) ) )
9085, 89eqtr4d 2265 . . . . . . . . . . . . 13  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( 8  x.  ( k ^ 2 ) )  +  ( 2  x.  ( k  x.  R ) ) )  =  ( 2  x.  ( ( 4  x.  ( k ^
2 ) )  +  ( k  x.  R
) ) ) )
9171, 90breqtrrd 4110 . . . . . . . . . . . 12  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  2  ||  ( ( 8  x.  ( k ^ 2 ) )  +  ( 2  x.  ( k  x.  R
) ) ) )
9265, 91jca 306 . . . . . . . . . . 11  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( ( 8  x.  ( k ^
2 ) )  +  ( 2  x.  (
k  x.  R ) ) )  e.  ZZ  /\  2  ||  ( ( 8  x.  ( k ^ 2 ) )  +  ( 2  x.  ( k  x.  R
) ) ) ) )
9392ex 115 . . . . . . . . . 10  |-  ( R  e.  ZZ  ->  (
k  e.  ZZ  ->  ( ( ( 8  x.  ( k ^ 2 ) )  +  ( 2  x.  ( k  x.  R ) ) )  e.  ZZ  /\  2  ||  ( ( 8  x.  ( k ^
2 ) )  +  ( 2  x.  (
k  x.  R ) ) ) ) ) )
9454, 55, 933syl 17 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8 ) )  -> 
( k  e.  ZZ  ->  ( ( ( 8  x.  ( k ^
2 ) )  +  ( 2  x.  (
k  x.  R ) ) )  e.  ZZ  /\  2  ||  ( ( 8  x.  ( k ^ 2 ) )  +  ( 2  x.  ( k  x.  R
) ) ) ) ) )
9594imp 124 . . . . . . . 8  |-  ( ( ( N  e.  ZZ  /\ 
-.  2  ||  N  /\  R  =  ( N  mod  8 ) )  /\  k  e.  ZZ )  ->  ( ( ( 8  x.  ( k ^ 2 ) )  +  ( 2  x.  ( k  x.  R
) ) )  e.  ZZ  /\  2  ||  ( ( 8  x.  ( k ^ 2 ) )  +  ( 2  x.  ( k  x.  R ) ) ) ) )
9695adantr 276 . . . . . . 7  |-  ( ( ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8
) )  /\  k  e.  ZZ )  /\  N  =  ( ( 8  x.  k )  +  R ) )  -> 
( ( ( 8  x.  ( k ^
2 ) )  +  ( 2  x.  (
k  x.  R ) ) )  e.  ZZ  /\  2  ||  ( ( 8  x.  ( k ^ 2 ) )  +  ( 2  x.  ( k  x.  R
) ) ) ) )
97 dvdsaddre2b 12347 . . . . . . 7  |-  ( ( 2  e.  ZZ  /\  ( ( ( R ^ 2 )  - 
1 )  /  8
)  e.  RR  /\  ( ( ( 8  x.  ( k ^
2 ) )  +  ( 2  x.  (
k  x.  R ) ) )  e.  ZZ  /\  2  ||  ( ( 8  x.  ( k ^ 2 ) )  +  ( 2  x.  ( k  x.  R
) ) ) ) )  ->  ( 2 
||  ( ( ( R ^ 2 )  -  1 )  / 
8 )  <->  2  ||  ( ( ( 8  x.  ( k ^
2 ) )  +  ( 2  x.  (
k  x.  R ) ) )  +  ( ( ( R ^
2 )  -  1 )  /  8 ) ) ) )
9834, 51, 96, 97mp3an2ani 1378 . . . . . 6  |-  ( ( ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8
) )  /\  k  e.  ZZ )  /\  N  =  ( ( 8  x.  k )  +  R ) )  -> 
( 2  ||  (
( ( R ^
2 )  -  1 )  /  8 )  <->  2  ||  ( ( ( 8  x.  (
k ^ 2 ) )  +  ( 2  x.  ( k  x.  R ) ) )  +  ( ( ( R ^ 2 )  -  1 )  / 
8 ) ) ) )
9933, 98bitr4d 191 . . . . 5  |-  ( ( ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8
) )  /\  k  e.  ZZ )  /\  N  =  ( ( 8  x.  k )  +  R ) )  -> 
( 2  ||  (
( ( N ^
2 )  -  1 )  /  8 )  <->  2  ||  ( ( ( R ^ 2 )  -  1 )  /  8 ) ) )
10099ex 115 . . . 4  |-  ( ( ( N  e.  ZZ  /\ 
-.  2  ||  N  /\  R  =  ( N  mod  8 ) )  /\  k  e.  ZZ )  ->  ( N  =  ( ( 8  x.  k )  +  R
)  ->  ( 2 
||  ( ( ( N ^ 2 )  -  1 )  / 
8 )  <->  2  ||  ( ( ( R ^ 2 )  - 
1 )  /  8
) ) ) )
10117, 100sylbid 150 . . 3  |-  ( ( ( N  e.  ZZ  /\ 
-.  2  ||  N  /\  R  =  ( N  mod  8 ) )  /\  k  e.  ZZ )  ->  ( N  =  ( ( k  x.  8 )  +  R
)  ->  ( 2 
||  ( ( ( N ^ 2 )  -  1 )  / 
8 )  <->  2  ||  ( ( ( R ^ 2 )  - 
1 )  /  8
) ) ) )
102101rexlimdva 2648 . 2  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8 ) )  -> 
( E. k  e.  ZZ  N  =  ( ( k  x.  8 )  +  R )  ->  ( 2  ||  ( ( ( N ^ 2 )  - 
1 )  /  8
)  <->  2  ||  (
( ( R ^
2 )  -  1 )  /  8 ) ) ) )
10310, 102mpd 13 1  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8 ) )  -> 
( 2  ||  (
( ( N ^
2 )  -  1 )  /  8 )  <->  2  ||  ( ( ( R ^ 2 )  -  1 )  /  8 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   E.wrex 2509   class class class wbr 4082  (class class class)co 6000   CCcc 7993   RRcr 7994   0cc0 7995   1c1 7996    + caddc 7998    x. cmul 8000    < clt 8177    - cmin 8313   # cap 8724    / cdiv 8815   NNcn 9106   2c2 9157   4c4 9159   8c8 9163   NN0cn0 9365   ZZcz 9442   QQcq 9810    mod cmo 10539   ^cexp 10755    || cdvds 12293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-7 9170  df-8 9171  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-ico 10086  df-fl 10485  df-mod 10540  df-seqfrec 10665  df-exp 10756  df-dvds 12294
This theorem is referenced by:  2lgsoddprmlem4  15785
  Copyright terms: Public domain W3C validator