ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgsoddprmlem2 Unicode version

Theorem 2lgsoddprmlem2 15698
Description: Lemma 2 for 2lgsoddprm . (Contributed by AV, 19-Jul-2021.)
Assertion
Ref Expression
2lgsoddprmlem2  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8 ) )  -> 
( 2  ||  (
( ( N ^
2 )  -  1 )  /  8 )  <->  2  ||  ( ( ( R ^ 2 )  -  1 )  /  8 ) ) )

Proof of Theorem 2lgsoddprmlem2
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 8nn 9239 . . . . . 6  |-  8  e.  NN
2 nnq 9789 . . . . . 6  |-  ( 8  e.  NN  ->  8  e.  QQ )
31, 2ax-mp 5 . . . . 5  |-  8  e.  QQ
4 8pos 9174 . . . . 5  |-  0  <  8
5 eqcom 2209 . . . . . 6  |-  ( R  =  ( N  mod  8 )  <->  ( N  mod  8 )  =  R )
6 modqmuladdim 10549 . . . . . 6  |-  ( ( N  e.  ZZ  /\  8  e.  QQ  /\  0  <  8 )  ->  (
( N  mod  8
)  =  R  ->  E. k  e.  ZZ  N  =  ( (
k  x.  8 )  +  R ) ) )
75, 6biimtrid 152 . . . . 5  |-  ( ( N  e.  ZZ  /\  8  e.  QQ  /\  0  <  8 )  ->  ( R  =  ( N  mod  8 )  ->  E. k  e.  ZZ  N  =  ( ( k  x.  8 )  +  R ) ) )
83, 4, 7mp3an23 1342 . . . 4  |-  ( N  e.  ZZ  ->  ( R  =  ( N  mod  8 )  ->  E. k  e.  ZZ  N  =  ( ( k  x.  8 )  +  R ) ) )
98imp 124 . . 3  |-  ( ( N  e.  ZZ  /\  R  =  ( N  mod  8 ) )  ->  E. k  e.  ZZ  N  =  ( (
k  x.  8 )  +  R ) )
1093adant2 1019 . 2  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8 ) )  ->  E. k  e.  ZZ  N  =  ( (
k  x.  8 )  +  R ) )
11 zcn 9412 . . . . . . . 8  |-  ( k  e.  ZZ  ->  k  e.  CC )
12 8cn 9157 . . . . . . . . 9  |-  8  e.  CC
1312a1i 9 . . . . . . . 8  |-  ( k  e.  ZZ  ->  8  e.  CC )
1411, 13mulcomd 8129 . . . . . . 7  |-  ( k  e.  ZZ  ->  (
k  x.  8 )  =  ( 8  x.  k ) )
1514adantl 277 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\ 
-.  2  ||  N  /\  R  =  ( N  mod  8 ) )  /\  k  e.  ZZ )  ->  ( k  x.  8 )  =  ( 8  x.  k ) )
1615oveq1d 5982 . . . . 5  |-  ( ( ( N  e.  ZZ  /\ 
-.  2  ||  N  /\  R  =  ( N  mod  8 ) )  /\  k  e.  ZZ )  ->  ( ( k  x.  8 )  +  R )  =  ( ( 8  x.  k
)  +  R ) )
1716eqeq2d 2219 . . . 4  |-  ( ( ( N  e.  ZZ  /\ 
-.  2  ||  N  /\  R  =  ( N  mod  8 ) )  /\  k  e.  ZZ )  ->  ( N  =  ( ( k  x.  8 )  +  R
)  <->  N  =  (
( 8  x.  k
)  +  R ) ) )
18 simpr 110 . . . . . . . . 9  |-  ( ( ( N  e.  ZZ  /\ 
-.  2  ||  N  /\  R  =  ( N  mod  8 ) )  /\  k  e.  ZZ )  ->  k  e.  ZZ )
1918adantr 276 . . . . . . . 8  |-  ( ( ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8
) )  /\  k  e.  ZZ )  /\  N  =  ( ( 8  x.  k )  +  R ) )  -> 
k  e.  ZZ )
20 id 19 . . . . . . . . . . . . . 14  |-  ( N  e.  ZZ  ->  N  e.  ZZ )
211a1i 9 . . . . . . . . . . . . . 14  |-  ( N  e.  ZZ  ->  8  e.  NN )
2220, 21zmodcld 10527 . . . . . . . . . . . . 13  |-  ( N  e.  ZZ  ->  ( N  mod  8 )  e. 
NN0 )
2322nn0zd 9528 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  ( N  mod  8 )  e.  ZZ )
24233ad2ant1 1021 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8 ) )  -> 
( N  mod  8
)  e.  ZZ )
25 eleq1 2270 . . . . . . . . . . . 12  |-  ( R  =  ( N  mod  8 )  ->  ( R  e.  ZZ  <->  ( N  mod  8 )  e.  ZZ ) )
26253ad2ant3 1023 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8 ) )  -> 
( R  e.  ZZ  <->  ( N  mod  8 )  e.  ZZ ) )
2724, 26mpbird 167 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8 ) )  ->  R  e.  ZZ )
2827adantr 276 . . . . . . . . 9  |-  ( ( ( N  e.  ZZ  /\ 
-.  2  ||  N  /\  R  =  ( N  mod  8 ) )  /\  k  e.  ZZ )  ->  R  e.  ZZ )
2928adantr 276 . . . . . . . 8  |-  ( ( ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8
) )  /\  k  e.  ZZ )  /\  N  =  ( ( 8  x.  k )  +  R ) )  ->  R  e.  ZZ )
30 simpr 110 . . . . . . . 8  |-  ( ( ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8
) )  /\  k  e.  ZZ )  /\  N  =  ( ( 8  x.  k )  +  R ) )  ->  N  =  ( (
8  x.  k )  +  R ) )
31 2lgsoddprmlem1 15697 . . . . . . . 8  |-  ( ( k  e.  ZZ  /\  R  e.  ZZ  /\  N  =  ( ( 8  x.  k )  +  R ) )  -> 
( ( ( N ^ 2 )  - 
1 )  /  8
)  =  ( ( ( 8  x.  (
k ^ 2 ) )  +  ( 2  x.  ( k  x.  R ) ) )  +  ( ( ( R ^ 2 )  -  1 )  / 
8 ) ) )
3219, 29, 30, 31syl3anc 1250 . . . . . . 7  |-  ( ( ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8
) )  /\  k  e.  ZZ )  /\  N  =  ( ( 8  x.  k )  +  R ) )  -> 
( ( ( N ^ 2 )  - 
1 )  /  8
)  =  ( ( ( 8  x.  (
k ^ 2 ) )  +  ( 2  x.  ( k  x.  R ) ) )  +  ( ( ( R ^ 2 )  -  1 )  / 
8 ) ) )
3332breq2d 4071 . . . . . 6  |-  ( ( ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8
) )  /\  k  e.  ZZ )  /\  N  =  ( ( 8  x.  k )  +  R ) )  -> 
( 2  ||  (
( ( N ^
2 )  -  1 )  /  8 )  <->  2  ||  ( ( ( 8  x.  (
k ^ 2 ) )  +  ( 2  x.  ( k  x.  R ) ) )  +  ( ( ( R ^ 2 )  -  1 )  / 
8 ) ) ) )
34 2z 9435 . . . . . . 7  |-  2  e.  ZZ
35 simp1 1000 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8 ) )  ->  N  e.  ZZ )
361a1i 9 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8 ) )  -> 
8  e.  NN )
3735, 36zmodcld 10527 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8 ) )  -> 
( N  mod  8
)  e.  NN0 )
3837nn0red 9384 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8 ) )  -> 
( N  mod  8
)  e.  RR )
39 eleq1 2270 . . . . . . . . . . 11  |-  ( R  =  ( N  mod  8 )  ->  ( R  e.  RR  <->  ( N  mod  8 )  e.  RR ) )
40393ad2ant3 1023 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8 ) )  -> 
( R  e.  RR  <->  ( N  mod  8 )  e.  RR ) )
4138, 40mpbird 167 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8 ) )  ->  R  e.  RR )
42 resqcl 10789 . . . . . . . . . . 11  |-  ( R  e.  RR  ->  ( R ^ 2 )  e.  RR )
43 peano2rem 8374 . . . . . . . . . . 11  |-  ( ( R ^ 2 )  e.  RR  ->  (
( R ^ 2 )  -  1 )  e.  RR )
4442, 43syl 14 . . . . . . . . . 10  |-  ( R  e.  RR  ->  (
( R ^ 2 )  -  1 )  e.  RR )
45 8re 9156 . . . . . . . . . . 11  |-  8  e.  RR
4645a1i 9 . . . . . . . . . 10  |-  ( R  e.  RR  ->  8  e.  RR )
4745, 4gt0ap0ii 8736 . . . . . . . . . . 11  |-  8 #  0
4847a1i 9 . . . . . . . . . 10  |-  ( R  e.  RR  ->  8 #  0 )
4944, 46, 48redivclapd 8943 . . . . . . . . 9  |-  ( R  e.  RR  ->  (
( ( R ^
2 )  -  1 )  /  8 )  e.  RR )
5041, 49syl 14 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8 ) )  -> 
( ( ( R ^ 2 )  - 
1 )  /  8
)  e.  RR )
5150adantr 276 . . . . . . 7  |-  ( ( ( N  e.  ZZ  /\ 
-.  2  ||  N  /\  R  =  ( N  mod  8 ) )  /\  k  e.  ZZ )  ->  ( ( ( R ^ 2 )  -  1 )  / 
8 )  e.  RR )
52 eleq1 2270 . . . . . . . . . . . 12  |-  ( R  =  ( N  mod  8 )  ->  ( R  e.  NN0  <->  ( N  mod  8 )  e.  NN0 ) )
53523ad2ant3 1023 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8 ) )  -> 
( R  e.  NN0  <->  ( N  mod  8 )  e. 
NN0 ) )
5437, 53mpbird 167 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8 ) )  ->  R  e.  NN0 )
55 nn0z 9427 . . . . . . . . . 10  |-  ( R  e.  NN0  ->  R  e.  ZZ )
561nnzi 9428 . . . . . . . . . . . . . . 15  |-  8  e.  ZZ
5756a1i 9 . . . . . . . . . . . . . 14  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  8  e.  ZZ )
58 zsqcl 10792 . . . . . . . . . . . . . . 15  |-  ( k  e.  ZZ  ->  (
k ^ 2 )  e.  ZZ )
5958adantl 277 . . . . . . . . . . . . . 14  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  ( k ^ 2 )  e.  ZZ )
6057, 59zmulcld 9536 . . . . . . . . . . . . 13  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  ( 8  x.  (
k ^ 2 ) )  e.  ZZ )
6134a1i 9 . . . . . . . . . . . . . 14  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  2  e.  ZZ )
62 zmulcl 9461 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  ZZ  /\  R  e.  ZZ )  ->  ( k  x.  R
)  e.  ZZ )
6362ancoms 268 . . . . . . . . . . . . . 14  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  ( k  x.  R
)  e.  ZZ )
6461, 63zmulcld 9536 . . . . . . . . . . . . 13  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  ( 2  x.  (
k  x.  R ) )  e.  ZZ )
6560, 64zaddcld 9534 . . . . . . . . . . . 12  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( 8  x.  ( k ^ 2 ) )  +  ( 2  x.  ( k  x.  R ) ) )  e.  ZZ )
66 4z 9437 . . . . . . . . . . . . . . . . 17  |-  4  e.  ZZ
6766a1i 9 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  4  e.  ZZ )
6867, 59zmulcld 9536 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  ( 4  x.  (
k ^ 2 ) )  e.  ZZ )
6968, 63zaddcld 9534 . . . . . . . . . . . . . 14  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( 4  x.  ( k ^ 2 ) )  +  ( k  x.  R ) )  e.  ZZ )
70 dvdsmul1 12239 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  ZZ  /\  ( ( 4  x.  ( k ^ 2 ) )  +  ( k  x.  R ) )  e.  ZZ )  ->  2  ||  (
2  x.  ( ( 4  x.  ( k ^ 2 ) )  +  ( k  x.  R ) ) ) )
7134, 69, 70sylancr 414 . . . . . . . . . . . . 13  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  2  ||  ( 2  x.  ( ( 4  x.  ( k ^
2 ) )  +  ( k  x.  R
) ) ) )
72 4t2e8 9230 . . . . . . . . . . . . . . . . . . 19  |-  ( 4  x.  2 )  =  8
73 4cn 9149 . . . . . . . . . . . . . . . . . . . 20  |-  4  e.  CC
74 2cn 9142 . . . . . . . . . . . . . . . . . . . 20  |-  2  e.  CC
7573, 74mulcomi 8113 . . . . . . . . . . . . . . . . . . 19  |-  ( 4  x.  2 )  =  ( 2  x.  4 )
7672, 75eqtr3i 2230 . . . . . . . . . . . . . . . . . 18  |-  8  =  ( 2  x.  4 )
7776a1i 9 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  8  =  ( 2  x.  4 ) )
7877oveq1d 5982 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  ( 8  x.  (
k ^ 2 ) )  =  ( ( 2  x.  4 )  x.  ( k ^
2 ) ) )
7974a1i 9 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  2  e.  CC )
8073a1i 9 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  4  e.  CC )
8158zcnd 9531 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  ZZ  ->  (
k ^ 2 )  e.  CC )
8281adantl 277 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  ( k ^ 2 )  e.  CC )
8379, 80, 82mulassd 8131 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( 2  x.  4 )  x.  (
k ^ 2 ) )  =  ( 2  x.  ( 4  x.  ( k ^ 2 ) ) ) )
8478, 83eqtrd 2240 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  ( 8  x.  (
k ^ 2 ) )  =  ( 2  x.  ( 4  x.  ( k ^ 2 ) ) ) )
8584oveq1d 5982 . . . . . . . . . . . . . 14  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( 8  x.  ( k ^ 2 ) )  +  ( 2  x.  ( k  x.  R ) ) )  =  ( ( 2  x.  ( 4  x.  ( k ^
2 ) ) )  +  ( 2  x.  ( k  x.  R
) ) ) )
8668zcnd 9531 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  ( 4  x.  (
k ^ 2 ) )  e.  CC )
8762zcnd 9531 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  ZZ  /\  R  e.  ZZ )  ->  ( k  x.  R
)  e.  CC )
8887ancoms 268 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  ( k  x.  R
)  e.  CC )
8979, 86, 88adddid 8132 . . . . . . . . . . . . . 14  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  ( 2  x.  (
( 4  x.  (
k ^ 2 ) )  +  ( k  x.  R ) ) )  =  ( ( 2  x.  ( 4  x.  ( k ^
2 ) ) )  +  ( 2  x.  ( k  x.  R
) ) ) )
9085, 89eqtr4d 2243 . . . . . . . . . . . . 13  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( 8  x.  ( k ^ 2 ) )  +  ( 2  x.  ( k  x.  R ) ) )  =  ( 2  x.  ( ( 4  x.  ( k ^
2 ) )  +  ( k  x.  R
) ) ) )
9171, 90breqtrrd 4087 . . . . . . . . . . . 12  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  2  ||  ( ( 8  x.  ( k ^ 2 ) )  +  ( 2  x.  ( k  x.  R
) ) ) )
9265, 91jca 306 . . . . . . . . . . 11  |-  ( ( R  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( ( 8  x.  ( k ^
2 ) )  +  ( 2  x.  (
k  x.  R ) ) )  e.  ZZ  /\  2  ||  ( ( 8  x.  ( k ^ 2 ) )  +  ( 2  x.  ( k  x.  R
) ) ) ) )
9392ex 115 . . . . . . . . . 10  |-  ( R  e.  ZZ  ->  (
k  e.  ZZ  ->  ( ( ( 8  x.  ( k ^ 2 ) )  +  ( 2  x.  ( k  x.  R ) ) )  e.  ZZ  /\  2  ||  ( ( 8  x.  ( k ^
2 ) )  +  ( 2  x.  (
k  x.  R ) ) ) ) ) )
9454, 55, 933syl 17 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8 ) )  -> 
( k  e.  ZZ  ->  ( ( ( 8  x.  ( k ^
2 ) )  +  ( 2  x.  (
k  x.  R ) ) )  e.  ZZ  /\  2  ||  ( ( 8  x.  ( k ^ 2 ) )  +  ( 2  x.  ( k  x.  R
) ) ) ) ) )
9594imp 124 . . . . . . . 8  |-  ( ( ( N  e.  ZZ  /\ 
-.  2  ||  N  /\  R  =  ( N  mod  8 ) )  /\  k  e.  ZZ )  ->  ( ( ( 8  x.  ( k ^ 2 ) )  +  ( 2  x.  ( k  x.  R
) ) )  e.  ZZ  /\  2  ||  ( ( 8  x.  ( k ^ 2 ) )  +  ( 2  x.  ( k  x.  R ) ) ) ) )
9695adantr 276 . . . . . . 7  |-  ( ( ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8
) )  /\  k  e.  ZZ )  /\  N  =  ( ( 8  x.  k )  +  R ) )  -> 
( ( ( 8  x.  ( k ^
2 ) )  +  ( 2  x.  (
k  x.  R ) ) )  e.  ZZ  /\  2  ||  ( ( 8  x.  ( k ^ 2 ) )  +  ( 2  x.  ( k  x.  R
) ) ) ) )
97 dvdsaddre2b 12267 . . . . . . 7  |-  ( ( 2  e.  ZZ  /\  ( ( ( R ^ 2 )  - 
1 )  /  8
)  e.  RR  /\  ( ( ( 8  x.  ( k ^
2 ) )  +  ( 2  x.  (
k  x.  R ) ) )  e.  ZZ  /\  2  ||  ( ( 8  x.  ( k ^ 2 ) )  +  ( 2  x.  ( k  x.  R
) ) ) ) )  ->  ( 2 
||  ( ( ( R ^ 2 )  -  1 )  / 
8 )  <->  2  ||  ( ( ( 8  x.  ( k ^
2 ) )  +  ( 2  x.  (
k  x.  R ) ) )  +  ( ( ( R ^
2 )  -  1 )  /  8 ) ) ) )
9834, 51, 96, 97mp3an2ani 1357 . . . . . 6  |-  ( ( ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8
) )  /\  k  e.  ZZ )  /\  N  =  ( ( 8  x.  k )  +  R ) )  -> 
( 2  ||  (
( ( R ^
2 )  -  1 )  /  8 )  <->  2  ||  ( ( ( 8  x.  (
k ^ 2 ) )  +  ( 2  x.  ( k  x.  R ) ) )  +  ( ( ( R ^ 2 )  -  1 )  / 
8 ) ) ) )
9933, 98bitr4d 191 . . . . 5  |-  ( ( ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8
) )  /\  k  e.  ZZ )  /\  N  =  ( ( 8  x.  k )  +  R ) )  -> 
( 2  ||  (
( ( N ^
2 )  -  1 )  /  8 )  <->  2  ||  ( ( ( R ^ 2 )  -  1 )  /  8 ) ) )
10099ex 115 . . . 4  |-  ( ( ( N  e.  ZZ  /\ 
-.  2  ||  N  /\  R  =  ( N  mod  8 ) )  /\  k  e.  ZZ )  ->  ( N  =  ( ( 8  x.  k )  +  R
)  ->  ( 2 
||  ( ( ( N ^ 2 )  -  1 )  / 
8 )  <->  2  ||  ( ( ( R ^ 2 )  - 
1 )  /  8
) ) ) )
10117, 100sylbid 150 . . 3  |-  ( ( ( N  e.  ZZ  /\ 
-.  2  ||  N  /\  R  =  ( N  mod  8 ) )  /\  k  e.  ZZ )  ->  ( N  =  ( ( k  x.  8 )  +  R
)  ->  ( 2 
||  ( ( ( N ^ 2 )  -  1 )  / 
8 )  <->  2  ||  ( ( ( R ^ 2 )  - 
1 )  /  8
) ) ) )
102101rexlimdva 2625 . 2  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8 ) )  -> 
( E. k  e.  ZZ  N  =  ( ( k  x.  8 )  +  R )  ->  ( 2  ||  ( ( ( N ^ 2 )  - 
1 )  /  8
)  <->  2  ||  (
( ( R ^
2 )  -  1 )  /  8 ) ) ) )
10310, 102mpd 13 1  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8 ) )  -> 
( 2  ||  (
( ( N ^
2 )  -  1 )  /  8 )  <->  2  ||  ( ( ( R ^ 2 )  -  1 )  /  8 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178   E.wrex 2487   class class class wbr 4059  (class class class)co 5967   CCcc 7958   RRcr 7959   0cc0 7960   1c1 7961    + caddc 7963    x. cmul 7965    < clt 8142    - cmin 8278   # cap 8689    / cdiv 8780   NNcn 9071   2c2 9122   4c4 9124   8c8 9128   NN0cn0 9330   ZZcz 9407   QQcq 9775    mod cmo 10504   ^cexp 10720    || cdvds 12213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-5 9133  df-6 9134  df-7 9135  df-8 9136  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-ico 10051  df-fl 10450  df-mod 10505  df-seqfrec 10630  df-exp 10721  df-dvds 12214
This theorem is referenced by:  2lgsoddprmlem4  15704
  Copyright terms: Public domain W3C validator