| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pockthi | Unicode version | ||
| Description: Pocklington's theorem,
which gives a sufficient criterion for a number
|
| Ref | Expression |
|---|---|
| pockthi.p |
|
| pockthi.g |
|
| pockthi.m |
|
| pockthi.n |
|
| pockthi.d |
|
| pockthi.e |
|
| pockthi.a |
|
| pockthi.fac |
|
| pockthi.gt |
|
| pockthi.mod |
|
| pockthi.gcd |
|
| Ref | Expression |
|---|---|
| pockthi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pockthi.d |
. 2
| |
| 2 | pockthi.p |
. . . . . 6
| |
| 3 | prmnn 12627 |
. . . . . 6
| |
| 4 | 2, 3 | ax-mp 5 |
. . . . 5
|
| 5 | pockthi.e |
. . . . . 6
| |
| 6 | 5 | nnnn0i 9373 |
. . . . 5
|
| 7 | nnexpcl 10769 |
. . . . 5
| |
| 8 | 4, 6, 7 | mp2an 426 |
. . . 4
|
| 9 | 8 | a1i 9 |
. . 3
|
| 10 | id 19 |
. . 3
| |
| 11 | pockthi.gt |
. . . 4
| |
| 12 | 11 | a1i 9 |
. . 3
|
| 13 | pockthi.n |
. . . . 5
| |
| 14 | pockthi.fac |
. . . . . . 7
| |
| 15 | 1 | nncni 9116 |
. . . . . . . 8
|
| 16 | 8 | nncni 9116 |
. . . . . . . 8
|
| 17 | 15, 16 | mulcomi 8148 |
. . . . . . 7
|
| 18 | 14, 17 | eqtri 2250 |
. . . . . 6
|
| 19 | 18 | oveq1i 6010 |
. . . . 5
|
| 20 | 13, 19 | eqtri 2250 |
. . . 4
|
| 21 | 20 | a1i 9 |
. . 3
|
| 22 | prmdvdsexpb 12666 |
. . . . . . 7
| |
| 23 | 2, 5, 22 | mp3an23 1363 |
. . . . . 6
|
| 24 | pockthi.m |
. . . . . . . . . . . . 13
| |
| 25 | pockthi.g |
. . . . . . . . . . . . . 14
| |
| 26 | 25, 4 | nnmulcli 9128 |
. . . . . . . . . . . . 13
|
| 27 | 24, 26 | eqeltri 2302 |
. . . . . . . . . . . 12
|
| 28 | 27 | nncni 9116 |
. . . . . . . . . . 11
|
| 29 | ax-1cn 8088 |
. . . . . . . . . . 11
| |
| 30 | 28, 29, 13 | mvrraddi 8359 |
. . . . . . . . . 10
|
| 31 | 30 | oveq2i 6011 |
. . . . . . . . 9
|
| 32 | 31 | oveq1i 6010 |
. . . . . . . 8
|
| 33 | pockthi.mod |
. . . . . . . . 9
| |
| 34 | peano2nn 9118 |
. . . . . . . . . . . . 13
| |
| 35 | 27, 34 | ax-mp 5 |
. . . . . . . . . . . 12
|
| 36 | 13, 35 | eqeltri 2302 |
. . . . . . . . . . 11
|
| 37 | nnq 9824 |
. . . . . . . . . . 11
| |
| 38 | 36, 37 | ax-mp 5 |
. . . . . . . . . 10
|
| 39 | 27 | nngt0i 9136 |
. . . . . . . . . . . 12
|
| 40 | 27 | nnrei 9115 |
. . . . . . . . . . . . 13
|
| 41 | 1re 8141 |
. . . . . . . . . . . . 13
| |
| 42 | ltaddpos2 8596 |
. . . . . . . . . . . . 13
| |
| 43 | 40, 41, 42 | mp2an 426 |
. . . . . . . . . . . 12
|
| 44 | 39, 43 | mpbi 145 |
. . . . . . . . . . 11
|
| 45 | 44, 13 | breqtrri 4109 |
. . . . . . . . . 10
|
| 46 | q1mod 10573 |
. . . . . . . . . 10
| |
| 47 | 38, 45, 46 | mp2an 426 |
. . . . . . . . 9
|
| 48 | 33, 47 | eqtri 2250 |
. . . . . . . 8
|
| 49 | 32, 48 | eqtri 2250 |
. . . . . . 7
|
| 50 | oveq2 6008 |
. . . . . . . . . . . 12
| |
| 51 | 25 | nncni 9116 |
. . . . . . . . . . . . . . 15
|
| 52 | 4 | nncni 9116 |
. . . . . . . . . . . . . . 15
|
| 53 | 51, 52 | mulcomi 8148 |
. . . . . . . . . . . . . 14
|
| 54 | 30, 24, 53 | 3eqtrri 2255 |
. . . . . . . . . . . . 13
|
| 55 | 36 | nncni 9116 |
. . . . . . . . . . . . . . 15
|
| 56 | 55, 29 | subcli 8418 |
. . . . . . . . . . . . . 14
|
| 57 | 4 | nnap0i 9137 |
. . . . . . . . . . . . . 14
|
| 58 | 56, 52, 51, 57 | divmulapi 8909 |
. . . . . . . . . . . . 13
|
| 59 | 54, 58 | mpbir 146 |
. . . . . . . . . . . 12
|
| 60 | 50, 59 | eqtrdi 2278 |
. . . . . . . . . . 11
|
| 61 | 60 | oveq2d 6016 |
. . . . . . . . . 10
|
| 62 | 61 | oveq1d 6015 |
. . . . . . . . 9
|
| 63 | 62 | oveq1d 6015 |
. . . . . . . 8
|
| 64 | pockthi.gcd |
. . . . . . . 8
| |
| 65 | 63, 64 | eqtrdi 2278 |
. . . . . . 7
|
| 66 | pockthi.a |
. . . . . . . . 9
| |
| 67 | 66 | nnzi 9463 |
. . . . . . . 8
|
| 68 | oveq1 6007 |
. . . . . . . . . . . 12
| |
| 69 | 68 | oveq1d 6015 |
. . . . . . . . . . 11
|
| 70 | 69 | eqeq1d 2238 |
. . . . . . . . . 10
|
| 71 | oveq1 6007 |
. . . . . . . . . . . . 13
| |
| 72 | 71 | oveq1d 6015 |
. . . . . . . . . . . 12
|
| 73 | 72 | oveq1d 6015 |
. . . . . . . . . . 11
|
| 74 | 73 | eqeq1d 2238 |
. . . . . . . . . 10
|
| 75 | 70, 74 | anbi12d 473 |
. . . . . . . . 9
|
| 76 | 75 | rspcev 2907 |
. . . . . . . 8
|
| 77 | 67, 76 | mpan 424 |
. . . . . . 7
|
| 78 | 49, 65, 77 | sylancr 414 |
. . . . . 6
|
| 79 | 23, 78 | biimtrdi 163 |
. . . . 5
|
| 80 | 79 | rgen 2583 |
. . . 4
|
| 81 | 80 | a1i 9 |
. . 3
|
| 82 | 9, 10, 12, 21, 81 | pockthg 12875 |
. 2
|
| 83 | 1, 82 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 ax-caucvg 8115 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-isom 5326 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-frec 6535 df-1o 6560 df-2o 6561 df-oadd 6564 df-er 6678 df-en 6886 df-dom 6887 df-fin 6888 df-sup 7147 df-inf 7148 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-n0 9366 df-xnn0 9429 df-z 9443 df-uz 9719 df-q 9811 df-rp 9846 df-fz 10201 df-fzo 10335 df-fl 10485 df-mod 10540 df-seqfrec 10665 df-exp 10756 df-ihash 10993 df-cj 11348 df-re 11349 df-im 11350 df-rsqrt 11504 df-abs 11505 df-clim 11785 df-proddc 12057 df-dvds 12294 df-gcd 12470 df-prm 12625 df-odz 12727 df-phi 12728 df-pc 12803 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |