ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pockthi Unicode version

Theorem pockthi 12876
Description: Pocklington's theorem, which gives a sufficient criterion for a number  N to be prime. This is the preferred method for verifying large primes, being much more efficient to compute than trial division. This form has been optimized for application to specific large primes; see pockthg 12875 for a more general closed-form version. (Contributed by Mario Carneiro, 2-Mar-2014.)
Hypotheses
Ref Expression
pockthi.p  |-  P  e. 
Prime
pockthi.g  |-  G  e.  NN
pockthi.m  |-  M  =  ( G  x.  P
)
pockthi.n  |-  N  =  ( M  +  1 )
pockthi.d  |-  D  e.  NN
pockthi.e  |-  E  e.  NN
pockthi.a  |-  A  e.  NN
pockthi.fac  |-  M  =  ( D  x.  ( P ^ E ) )
pockthi.gt  |-  D  < 
( P ^ E
)
pockthi.mod  |-  ( ( A ^ M )  mod  N )  =  ( 1  mod  N
)
pockthi.gcd  |-  ( ( ( A ^ G
)  -  1 )  gcd  N )  =  1
Assertion
Ref Expression
pockthi  |-  N  e. 
Prime

Proof of Theorem pockthi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pockthi.d . 2  |-  D  e.  NN
2 pockthi.p . . . . . 6  |-  P  e. 
Prime
3 prmnn 12627 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  NN )
42, 3ax-mp 5 . . . . 5  |-  P  e.  NN
5 pockthi.e . . . . . 6  |-  E  e.  NN
65nnnn0i 9373 . . . . 5  |-  E  e. 
NN0
7 nnexpcl 10769 . . . . 5  |-  ( ( P  e.  NN  /\  E  e.  NN0 )  -> 
( P ^ E
)  e.  NN )
84, 6, 7mp2an 426 . . . 4  |-  ( P ^ E )  e.  NN
98a1i 9 . . 3  |-  ( D  e.  NN  ->  ( P ^ E )  e.  NN )
10 id 19 . . 3  |-  ( D  e.  NN  ->  D  e.  NN )
11 pockthi.gt . . . 4  |-  D  < 
( P ^ E
)
1211a1i 9 . . 3  |-  ( D  e.  NN  ->  D  <  ( P ^ E
) )
13 pockthi.n . . . . 5  |-  N  =  ( M  +  1 )
14 pockthi.fac . . . . . . 7  |-  M  =  ( D  x.  ( P ^ E ) )
151nncni 9116 . . . . . . . 8  |-  D  e.  CC
168nncni 9116 . . . . . . . 8  |-  ( P ^ E )  e.  CC
1715, 16mulcomi 8148 . . . . . . 7  |-  ( D  x.  ( P ^ E ) )  =  ( ( P ^ E )  x.  D
)
1814, 17eqtri 2250 . . . . . 6  |-  M  =  ( ( P ^ E )  x.  D
)
1918oveq1i 6010 . . . . 5  |-  ( M  +  1 )  =  ( ( ( P ^ E )  x.  D )  +  1 )
2013, 19eqtri 2250 . . . 4  |-  N  =  ( ( ( P ^ E )  x.  D )  +  1 )
2120a1i 9 . . 3  |-  ( D  e.  NN  ->  N  =  ( ( ( P ^ E )  x.  D )  +  1 ) )
22 prmdvdsexpb 12666 . . . . . . 7  |-  ( ( x  e.  Prime  /\  P  e.  Prime  /\  E  e.  NN )  ->  ( x 
||  ( P ^ E )  <->  x  =  P ) )
232, 5, 22mp3an23 1363 . . . . . 6  |-  ( x  e.  Prime  ->  ( x 
||  ( P ^ E )  <->  x  =  P ) )
24 pockthi.m . . . . . . . . . . . . 13  |-  M  =  ( G  x.  P
)
25 pockthi.g . . . . . . . . . . . . . 14  |-  G  e.  NN
2625, 4nnmulcli 9128 . . . . . . . . . . . . 13  |-  ( G  x.  P )  e.  NN
2724, 26eqeltri 2302 . . . . . . . . . . . 12  |-  M  e.  NN
2827nncni 9116 . . . . . . . . . . 11  |-  M  e.  CC
29 ax-1cn 8088 . . . . . . . . . . 11  |-  1  e.  CC
3028, 29, 13mvrraddi 8359 . . . . . . . . . 10  |-  ( N  -  1 )  =  M
3130oveq2i 6011 . . . . . . . . 9  |-  ( A ^ ( N  - 
1 ) )  =  ( A ^ M
)
3231oveq1i 6010 . . . . . . . 8  |-  ( ( A ^ ( N  -  1 ) )  mod  N )  =  ( ( A ^ M )  mod  N
)
33 pockthi.mod . . . . . . . . 9  |-  ( ( A ^ M )  mod  N )  =  ( 1  mod  N
)
34 peano2nn 9118 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  ( M  +  1 )  e.  NN )
3527, 34ax-mp 5 . . . . . . . . . . . 12  |-  ( M  +  1 )  e.  NN
3613, 35eqeltri 2302 . . . . . . . . . . 11  |-  N  e.  NN
37 nnq 9824 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  N  e.  QQ )
3836, 37ax-mp 5 . . . . . . . . . 10  |-  N  e.  QQ
3927nngt0i 9136 . . . . . . . . . . . 12  |-  0  <  M
4027nnrei 9115 . . . . . . . . . . . . 13  |-  M  e.  RR
41 1re 8141 . . . . . . . . . . . . 13  |-  1  e.  RR
42 ltaddpos2 8596 . . . . . . . . . . . . 13  |-  ( ( M  e.  RR  /\  1  e.  RR )  ->  ( 0  <  M  <->  1  <  ( M  + 
1 ) ) )
4340, 41, 42mp2an 426 . . . . . . . . . . . 12  |-  ( 0  <  M  <->  1  <  ( M  +  1 ) )
4439, 43mpbi 145 . . . . . . . . . . 11  |-  1  <  ( M  +  1 )
4544, 13breqtrri 4109 . . . . . . . . . 10  |-  1  <  N
46 q1mod 10573 . . . . . . . . . 10  |-  ( ( N  e.  QQ  /\  1  <  N )  -> 
( 1  mod  N
)  =  1 )
4738, 45, 46mp2an 426 . . . . . . . . 9  |-  ( 1  mod  N )  =  1
4833, 47eqtri 2250 . . . . . . . 8  |-  ( ( A ^ M )  mod  N )  =  1
4932, 48eqtri 2250 . . . . . . 7  |-  ( ( A ^ ( N  -  1 ) )  mod  N )  =  1
50 oveq2 6008 . . . . . . . . . . . 12  |-  ( x  =  P  ->  (
( N  -  1 )  /  x )  =  ( ( N  -  1 )  /  P ) )
5125nncni 9116 . . . . . . . . . . . . . . 15  |-  G  e.  CC
524nncni 9116 . . . . . . . . . . . . . . 15  |-  P  e.  CC
5351, 52mulcomi 8148 . . . . . . . . . . . . . 14  |-  ( G  x.  P )  =  ( P  x.  G
)
5430, 24, 533eqtrri 2255 . . . . . . . . . . . . 13  |-  ( P  x.  G )  =  ( N  -  1 )
5536nncni 9116 . . . . . . . . . . . . . . 15  |-  N  e.  CC
5655, 29subcli 8418 . . . . . . . . . . . . . 14  |-  ( N  -  1 )  e.  CC
574nnap0i 9137 . . . . . . . . . . . . . 14  |-  P #  0
5856, 52, 51, 57divmulapi 8909 . . . . . . . . . . . . 13  |-  ( ( ( N  -  1 )  /  P )  =  G  <->  ( P  x.  G )  =  ( N  -  1 ) )
5954, 58mpbir 146 . . . . . . . . . . . 12  |-  ( ( N  -  1 )  /  P )  =  G
6050, 59eqtrdi 2278 . . . . . . . . . . 11  |-  ( x  =  P  ->  (
( N  -  1 )  /  x )  =  G )
6160oveq2d 6016 . . . . . . . . . 10  |-  ( x  =  P  ->  ( A ^ ( ( N  -  1 )  /  x ) )  =  ( A ^ G
) )
6261oveq1d 6015 . . . . . . . . 9  |-  ( x  =  P  ->  (
( A ^ (
( N  -  1 )  /  x ) )  -  1 )  =  ( ( A ^ G )  - 
1 ) )
6362oveq1d 6015 . . . . . . . 8  |-  ( x  =  P  ->  (
( ( A ^
( ( N  - 
1 )  /  x
) )  -  1 )  gcd  N )  =  ( ( ( A ^ G )  -  1 )  gcd 
N ) )
64 pockthi.gcd . . . . . . . 8  |-  ( ( ( A ^ G
)  -  1 )  gcd  N )  =  1
6563, 64eqtrdi 2278 . . . . . . 7  |-  ( x  =  P  ->  (
( ( A ^
( ( N  - 
1 )  /  x
) )  -  1 )  gcd  N )  =  1 )
66 pockthi.a . . . . . . . . 9  |-  A  e.  NN
6766nnzi 9463 . . . . . . . 8  |-  A  e.  ZZ
68 oveq1 6007 . . . . . . . . . . . 12  |-  ( y  =  A  ->  (
y ^ ( N  -  1 ) )  =  ( A ^
( N  -  1 ) ) )
6968oveq1d 6015 . . . . . . . . . . 11  |-  ( y  =  A  ->  (
( y ^ ( N  -  1 ) )  mod  N )  =  ( ( A ^ ( N  - 
1 ) )  mod 
N ) )
7069eqeq1d 2238 . . . . . . . . . 10  |-  ( y  =  A  ->  (
( ( y ^
( N  -  1 ) )  mod  N
)  =  1  <->  (
( A ^ ( N  -  1 ) )  mod  N )  =  1 ) )
71 oveq1 6007 . . . . . . . . . . . . 13  |-  ( y  =  A  ->  (
y ^ ( ( N  -  1 )  /  x ) )  =  ( A ^
( ( N  - 
1 )  /  x
) ) )
7271oveq1d 6015 . . . . . . . . . . . 12  |-  ( y  =  A  ->  (
( y ^ (
( N  -  1 )  /  x ) )  -  1 )  =  ( ( A ^ ( ( N  -  1 )  /  x ) )  - 
1 ) )
7372oveq1d 6015 . . . . . . . . . . 11  |-  ( y  =  A  ->  (
( ( y ^
( ( N  - 
1 )  /  x
) )  -  1 )  gcd  N )  =  ( ( ( A ^ ( ( N  -  1 )  /  x ) )  -  1 )  gcd 
N ) )
7473eqeq1d 2238 . . . . . . . . . 10  |-  ( y  =  A  ->  (
( ( ( y ^ ( ( N  -  1 )  /  x ) )  - 
1 )  gcd  N
)  =  1  <->  (
( ( A ^
( ( N  - 
1 )  /  x
) )  -  1 )  gcd  N )  =  1 ) )
7570, 74anbi12d 473 . . . . . . . . 9  |-  ( y  =  A  ->  (
( ( ( y ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( y ^ ( ( N  -  1 )  /  x ) )  -  1 )  gcd 
N )  =  1 )  <->  ( ( ( A ^ ( N  -  1 ) )  mod  N )  =  1  /\  ( ( ( A ^ (
( N  -  1 )  /  x ) )  -  1 )  gcd  N )  =  1 ) ) )
7675rspcev 2907 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( ( ( A ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( A ^ ( ( N  -  1 )  /  x ) )  -  1 )  gcd 
N )  =  1 ) )  ->  E. y  e.  ZZ  ( ( ( y ^ ( N  -  1 ) )  mod  N )  =  1  /\  ( ( ( y ^ (
( N  -  1 )  /  x ) )  -  1 )  gcd  N )  =  1 ) )
7767, 76mpan 424 . . . . . . 7  |-  ( ( ( ( A ^
( N  -  1 ) )  mod  N
)  =  1  /\  ( ( ( A ^ ( ( N  -  1 )  /  x ) )  - 
1 )  gcd  N
)  =  1 )  ->  E. y  e.  ZZ  ( ( ( y ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( y ^ ( ( N  -  1 )  /  x ) )  -  1 )  gcd 
N )  =  1 ) )
7849, 65, 77sylancr 414 . . . . . 6  |-  ( x  =  P  ->  E. y  e.  ZZ  ( ( ( y ^ ( N  -  1 ) )  mod  N )  =  1  /\  ( ( ( y ^ (
( N  -  1 )  /  x ) )  -  1 )  gcd  N )  =  1 ) )
7923, 78biimtrdi 163 . . . . 5  |-  ( x  e.  Prime  ->  ( x 
||  ( P ^ E )  ->  E. y  e.  ZZ  ( ( ( y ^ ( N  -  1 ) )  mod  N )  =  1  /\  ( ( ( y ^ (
( N  -  1 )  /  x ) )  -  1 )  gcd  N )  =  1 ) ) )
8079rgen 2583 . . . 4  |-  A. x  e.  Prime  ( x  ||  ( P ^ E )  ->  E. y  e.  ZZ  ( ( ( y ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( y ^ ( ( N  -  1 )  /  x ) )  -  1 )  gcd 
N )  =  1 ) )
8180a1i 9 . . 3  |-  ( D  e.  NN  ->  A. x  e.  Prime  ( x  ||  ( P ^ E )  ->  E. y  e.  ZZ  ( ( ( y ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( y ^ ( ( N  -  1 )  /  x ) )  -  1 )  gcd 
N )  =  1 ) ) )
829, 10, 12, 21, 81pockthg 12875 . 2  |-  ( D  e.  NN  ->  N  e.  Prime )
831, 82ax-mp 5 1  |-  N  e. 
Prime
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509   class class class wbr 4082  (class class class)co 6000   RRcr 7994   0cc0 7995   1c1 7996    + caddc 7998    x. cmul 8000    < clt 8177    - cmin 8313    / cdiv 8815   NNcn 9106   NN0cn0 9365   ZZcz 9442   QQcq 9810    mod cmo 10539   ^cexp 10755    || cdvds 12293    gcd cgcd 12469   Primecprime 12624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-frec 6535  df-1o 6560  df-2o 6561  df-oadd 6564  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888  df-sup 7147  df-inf 7148  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-xnn0 9429  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fzo 10335  df-fl 10485  df-mod 10540  df-seqfrec 10665  df-exp 10756  df-ihash 10993  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-clim 11785  df-proddc 12057  df-dvds 12294  df-gcd 12470  df-prm 12625  df-odz 12727  df-phi 12728  df-pc 12803
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator