| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pockthi | Unicode version | ||
| Description: Pocklington's theorem,
which gives a sufficient criterion for a number
|
| Ref | Expression |
|---|---|
| pockthi.p |
|
| pockthi.g |
|
| pockthi.m |
|
| pockthi.n |
|
| pockthi.d |
|
| pockthi.e |
|
| pockthi.a |
|
| pockthi.fac |
|
| pockthi.gt |
|
| pockthi.mod |
|
| pockthi.gcd |
|
| Ref | Expression |
|---|---|
| pockthi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pockthi.d |
. 2
| |
| 2 | pockthi.p |
. . . . . 6
| |
| 3 | prmnn 12303 |
. . . . . 6
| |
| 4 | 2, 3 | ax-mp 5 |
. . . . 5
|
| 5 | pockthi.e |
. . . . . 6
| |
| 6 | 5 | nnnn0i 9274 |
. . . . 5
|
| 7 | nnexpcl 10661 |
. . . . 5
| |
| 8 | 4, 6, 7 | mp2an 426 |
. . . 4
|
| 9 | 8 | a1i 9 |
. . 3
|
| 10 | id 19 |
. . 3
| |
| 11 | pockthi.gt |
. . . 4
| |
| 12 | 11 | a1i 9 |
. . 3
|
| 13 | pockthi.n |
. . . . 5
| |
| 14 | pockthi.fac |
. . . . . . 7
| |
| 15 | 1 | nncni 9017 |
. . . . . . . 8
|
| 16 | 8 | nncni 9017 |
. . . . . . . 8
|
| 17 | 15, 16 | mulcomi 8049 |
. . . . . . 7
|
| 18 | 14, 17 | eqtri 2217 |
. . . . . 6
|
| 19 | 18 | oveq1i 5935 |
. . . . 5
|
| 20 | 13, 19 | eqtri 2217 |
. . . 4
|
| 21 | 20 | a1i 9 |
. . 3
|
| 22 | prmdvdsexpb 12342 |
. . . . . . 7
| |
| 23 | 2, 5, 22 | mp3an23 1340 |
. . . . . 6
|
| 24 | pockthi.m |
. . . . . . . . . . . . 13
| |
| 25 | pockthi.g |
. . . . . . . . . . . . . 14
| |
| 26 | 25, 4 | nnmulcli 9029 |
. . . . . . . . . . . . 13
|
| 27 | 24, 26 | eqeltri 2269 |
. . . . . . . . . . . 12
|
| 28 | 27 | nncni 9017 |
. . . . . . . . . . 11
|
| 29 | ax-1cn 7989 |
. . . . . . . . . . 11
| |
| 30 | 28, 29, 13 | mvrraddi 8260 |
. . . . . . . . . 10
|
| 31 | 30 | oveq2i 5936 |
. . . . . . . . 9
|
| 32 | 31 | oveq1i 5935 |
. . . . . . . 8
|
| 33 | pockthi.mod |
. . . . . . . . 9
| |
| 34 | peano2nn 9019 |
. . . . . . . . . . . . 13
| |
| 35 | 27, 34 | ax-mp 5 |
. . . . . . . . . . . 12
|
| 36 | 13, 35 | eqeltri 2269 |
. . . . . . . . . . 11
|
| 37 | nnq 9724 |
. . . . . . . . . . 11
| |
| 38 | 36, 37 | ax-mp 5 |
. . . . . . . . . 10
|
| 39 | 27 | nngt0i 9037 |
. . . . . . . . . . . 12
|
| 40 | 27 | nnrei 9016 |
. . . . . . . . . . . . 13
|
| 41 | 1re 8042 |
. . . . . . . . . . . . 13
| |
| 42 | ltaddpos2 8497 |
. . . . . . . . . . . . 13
| |
| 43 | 40, 41, 42 | mp2an 426 |
. . . . . . . . . . . 12
|
| 44 | 39, 43 | mpbi 145 |
. . . . . . . . . . 11
|
| 45 | 44, 13 | breqtrri 4061 |
. . . . . . . . . 10
|
| 46 | q1mod 10465 |
. . . . . . . . . 10
| |
| 47 | 38, 45, 46 | mp2an 426 |
. . . . . . . . 9
|
| 48 | 33, 47 | eqtri 2217 |
. . . . . . . 8
|
| 49 | 32, 48 | eqtri 2217 |
. . . . . . 7
|
| 50 | oveq2 5933 |
. . . . . . . . . . . 12
| |
| 51 | 25 | nncni 9017 |
. . . . . . . . . . . . . . 15
|
| 52 | 4 | nncni 9017 |
. . . . . . . . . . . . . . 15
|
| 53 | 51, 52 | mulcomi 8049 |
. . . . . . . . . . . . . 14
|
| 54 | 30, 24, 53 | 3eqtrri 2222 |
. . . . . . . . . . . . 13
|
| 55 | 36 | nncni 9017 |
. . . . . . . . . . . . . . 15
|
| 56 | 55, 29 | subcli 8319 |
. . . . . . . . . . . . . 14
|
| 57 | 4 | nnap0i 9038 |
. . . . . . . . . . . . . 14
|
| 58 | 56, 52, 51, 57 | divmulapi 8810 |
. . . . . . . . . . . . 13
|
| 59 | 54, 58 | mpbir 146 |
. . . . . . . . . . . 12
|
| 60 | 50, 59 | eqtrdi 2245 |
. . . . . . . . . . 11
|
| 61 | 60 | oveq2d 5941 |
. . . . . . . . . 10
|
| 62 | 61 | oveq1d 5940 |
. . . . . . . . 9
|
| 63 | 62 | oveq1d 5940 |
. . . . . . . 8
|
| 64 | pockthi.gcd |
. . . . . . . 8
| |
| 65 | 63, 64 | eqtrdi 2245 |
. . . . . . 7
|
| 66 | pockthi.a |
. . . . . . . . 9
| |
| 67 | 66 | nnzi 9364 |
. . . . . . . 8
|
| 68 | oveq1 5932 |
. . . . . . . . . . . 12
| |
| 69 | 68 | oveq1d 5940 |
. . . . . . . . . . 11
|
| 70 | 69 | eqeq1d 2205 |
. . . . . . . . . 10
|
| 71 | oveq1 5932 |
. . . . . . . . . . . . 13
| |
| 72 | 71 | oveq1d 5940 |
. . . . . . . . . . . 12
|
| 73 | 72 | oveq1d 5940 |
. . . . . . . . . . 11
|
| 74 | 73 | eqeq1d 2205 |
. . . . . . . . . 10
|
| 75 | 70, 74 | anbi12d 473 |
. . . . . . . . 9
|
| 76 | 75 | rspcev 2868 |
. . . . . . . 8
|
| 77 | 67, 76 | mpan 424 |
. . . . . . 7
|
| 78 | 49, 65, 77 | sylancr 414 |
. . . . . 6
|
| 79 | 23, 78 | biimtrdi 163 |
. . . . 5
|
| 80 | 79 | rgen 2550 |
. . . 4
|
| 81 | 80 | a1i 9 |
. . 3
|
| 82 | 9, 10, 12, 21, 81 | pockthg 12551 |
. 2
|
| 83 | 1, 82 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 ax-caucvg 8016 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-frec 6458 df-1o 6483 df-2o 6484 df-oadd 6487 df-er 6601 df-en 6809 df-dom 6810 df-fin 6811 df-sup 7059 df-inf 7060 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-n0 9267 df-xnn0 9330 df-z 9344 df-uz 9619 df-q 9711 df-rp 9746 df-fz 10101 df-fzo 10235 df-fl 10377 df-mod 10432 df-seqfrec 10557 df-exp 10648 df-ihash 10885 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 df-clim 11461 df-proddc 11733 df-dvds 11970 df-gcd 12146 df-prm 12301 df-odz 12403 df-phi 12404 df-pc 12479 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |