ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pockthi Unicode version

Theorem pockthi 12297
Description: Pocklington's theorem, which gives a sufficient criterion for a number  N to be prime. This is the preferred method for verifying large primes, being much more efficient to compute than trial division. This form has been optimized for application to specific large primes; see pockthg 12296 for a more general closed-form version. (Contributed by Mario Carneiro, 2-Mar-2014.)
Hypotheses
Ref Expression
pockthi.p  |-  P  e. 
Prime
pockthi.g  |-  G  e.  NN
pockthi.m  |-  M  =  ( G  x.  P
)
pockthi.n  |-  N  =  ( M  +  1 )
pockthi.d  |-  D  e.  NN
pockthi.e  |-  E  e.  NN
pockthi.a  |-  A  e.  NN
pockthi.fac  |-  M  =  ( D  x.  ( P ^ E ) )
pockthi.gt  |-  D  < 
( P ^ E
)
pockthi.mod  |-  ( ( A ^ M )  mod  N )  =  ( 1  mod  N
)
pockthi.gcd  |-  ( ( ( A ^ G
)  -  1 )  gcd  N )  =  1
Assertion
Ref Expression
pockthi  |-  N  e. 
Prime

Proof of Theorem pockthi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pockthi.d . 2  |-  D  e.  NN
2 pockthi.p . . . . . 6  |-  P  e. 
Prime
3 prmnn 12051 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  NN )
42, 3ax-mp 5 . . . . 5  |-  P  e.  NN
5 pockthi.e . . . . . 6  |-  E  e.  NN
65nnnn0i 9130 . . . . 5  |-  E  e. 
NN0
7 nnexpcl 10476 . . . . 5  |-  ( ( P  e.  NN  /\  E  e.  NN0 )  -> 
( P ^ E
)  e.  NN )
84, 6, 7mp2an 424 . . . 4  |-  ( P ^ E )  e.  NN
98a1i 9 . . 3  |-  ( D  e.  NN  ->  ( P ^ E )  e.  NN )
10 id 19 . . 3  |-  ( D  e.  NN  ->  D  e.  NN )
11 pockthi.gt . . . 4  |-  D  < 
( P ^ E
)
1211a1i 9 . . 3  |-  ( D  e.  NN  ->  D  <  ( P ^ E
) )
13 pockthi.n . . . . 5  |-  N  =  ( M  +  1 )
14 pockthi.fac . . . . . . 7  |-  M  =  ( D  x.  ( P ^ E ) )
151nncni 8875 . . . . . . . 8  |-  D  e.  CC
168nncni 8875 . . . . . . . 8  |-  ( P ^ E )  e.  CC
1715, 16mulcomi 7913 . . . . . . 7  |-  ( D  x.  ( P ^ E ) )  =  ( ( P ^ E )  x.  D
)
1814, 17eqtri 2191 . . . . . 6  |-  M  =  ( ( P ^ E )  x.  D
)
1918oveq1i 5860 . . . . 5  |-  ( M  +  1 )  =  ( ( ( P ^ E )  x.  D )  +  1 )
2013, 19eqtri 2191 . . . 4  |-  N  =  ( ( ( P ^ E )  x.  D )  +  1 )
2120a1i 9 . . 3  |-  ( D  e.  NN  ->  N  =  ( ( ( P ^ E )  x.  D )  +  1 ) )
22 prmdvdsexpb 12090 . . . . . . 7  |-  ( ( x  e.  Prime  /\  P  e.  Prime  /\  E  e.  NN )  ->  ( x 
||  ( P ^ E )  <->  x  =  P ) )
232, 5, 22mp3an23 1324 . . . . . 6  |-  ( x  e.  Prime  ->  ( x 
||  ( P ^ E )  <->  x  =  P ) )
24 pockthi.m . . . . . . . . . . . . 13  |-  M  =  ( G  x.  P
)
25 pockthi.g . . . . . . . . . . . . . 14  |-  G  e.  NN
2625, 4nnmulcli 8887 . . . . . . . . . . . . 13  |-  ( G  x.  P )  e.  NN
2724, 26eqeltri 2243 . . . . . . . . . . . 12  |-  M  e.  NN
2827nncni 8875 . . . . . . . . . . 11  |-  M  e.  CC
29 ax-1cn 7854 . . . . . . . . . . 11  |-  1  e.  CC
3028, 29, 13mvrraddi 8123 . . . . . . . . . 10  |-  ( N  -  1 )  =  M
3130oveq2i 5861 . . . . . . . . 9  |-  ( A ^ ( N  - 
1 ) )  =  ( A ^ M
)
3231oveq1i 5860 . . . . . . . 8  |-  ( ( A ^ ( N  -  1 ) )  mod  N )  =  ( ( A ^ M )  mod  N
)
33 pockthi.mod . . . . . . . . 9  |-  ( ( A ^ M )  mod  N )  =  ( 1  mod  N
)
34 peano2nn 8877 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  ( M  +  1 )  e.  NN )
3527, 34ax-mp 5 . . . . . . . . . . . 12  |-  ( M  +  1 )  e.  NN
3613, 35eqeltri 2243 . . . . . . . . . . 11  |-  N  e.  NN
37 nnq 9579 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  N  e.  QQ )
3836, 37ax-mp 5 . . . . . . . . . 10  |-  N  e.  QQ
3927nngt0i 8895 . . . . . . . . . . . 12  |-  0  <  M
4027nnrei 8874 . . . . . . . . . . . . 13  |-  M  e.  RR
41 1re 7906 . . . . . . . . . . . . 13  |-  1  e.  RR
42 ltaddpos2 8359 . . . . . . . . . . . . 13  |-  ( ( M  e.  RR  /\  1  e.  RR )  ->  ( 0  <  M  <->  1  <  ( M  + 
1 ) ) )
4340, 41, 42mp2an 424 . . . . . . . . . . . 12  |-  ( 0  <  M  <->  1  <  ( M  +  1 ) )
4439, 43mpbi 144 . . . . . . . . . . 11  |-  1  <  ( M  +  1 )
4544, 13breqtrri 4014 . . . . . . . . . 10  |-  1  <  N
46 q1mod 10299 . . . . . . . . . 10  |-  ( ( N  e.  QQ  /\  1  <  N )  -> 
( 1  mod  N
)  =  1 )
4738, 45, 46mp2an 424 . . . . . . . . 9  |-  ( 1  mod  N )  =  1
4833, 47eqtri 2191 . . . . . . . 8  |-  ( ( A ^ M )  mod  N )  =  1
4932, 48eqtri 2191 . . . . . . 7  |-  ( ( A ^ ( N  -  1 ) )  mod  N )  =  1
50 oveq2 5858 . . . . . . . . . . . 12  |-  ( x  =  P  ->  (
( N  -  1 )  /  x )  =  ( ( N  -  1 )  /  P ) )
5125nncni 8875 . . . . . . . . . . . . . . 15  |-  G  e.  CC
524nncni 8875 . . . . . . . . . . . . . . 15  |-  P  e.  CC
5351, 52mulcomi 7913 . . . . . . . . . . . . . 14  |-  ( G  x.  P )  =  ( P  x.  G
)
5430, 24, 533eqtrri 2196 . . . . . . . . . . . . 13  |-  ( P  x.  G )  =  ( N  -  1 )
5536nncni 8875 . . . . . . . . . . . . . . 15  |-  N  e.  CC
5655, 29subcli 8182 . . . . . . . . . . . . . 14  |-  ( N  -  1 )  e.  CC
574nnap0i 8896 . . . . . . . . . . . . . 14  |-  P #  0
5856, 52, 51, 57divmulapi 8670 . . . . . . . . . . . . 13  |-  ( ( ( N  -  1 )  /  P )  =  G  <->  ( P  x.  G )  =  ( N  -  1 ) )
5954, 58mpbir 145 . . . . . . . . . . . 12  |-  ( ( N  -  1 )  /  P )  =  G
6050, 59eqtrdi 2219 . . . . . . . . . . 11  |-  ( x  =  P  ->  (
( N  -  1 )  /  x )  =  G )
6160oveq2d 5866 . . . . . . . . . 10  |-  ( x  =  P  ->  ( A ^ ( ( N  -  1 )  /  x ) )  =  ( A ^ G
) )
6261oveq1d 5865 . . . . . . . . 9  |-  ( x  =  P  ->  (
( A ^ (
( N  -  1 )  /  x ) )  -  1 )  =  ( ( A ^ G )  - 
1 ) )
6362oveq1d 5865 . . . . . . . 8  |-  ( x  =  P  ->  (
( ( A ^
( ( N  - 
1 )  /  x
) )  -  1 )  gcd  N )  =  ( ( ( A ^ G )  -  1 )  gcd 
N ) )
64 pockthi.gcd . . . . . . . 8  |-  ( ( ( A ^ G
)  -  1 )  gcd  N )  =  1
6563, 64eqtrdi 2219 . . . . . . 7  |-  ( x  =  P  ->  (
( ( A ^
( ( N  - 
1 )  /  x
) )  -  1 )  gcd  N )  =  1 )
66 pockthi.a . . . . . . . . 9  |-  A  e.  NN
6766nnzi 9220 . . . . . . . 8  |-  A  e.  ZZ
68 oveq1 5857 . . . . . . . . . . . 12  |-  ( y  =  A  ->  (
y ^ ( N  -  1 ) )  =  ( A ^
( N  -  1 ) ) )
6968oveq1d 5865 . . . . . . . . . . 11  |-  ( y  =  A  ->  (
( y ^ ( N  -  1 ) )  mod  N )  =  ( ( A ^ ( N  - 
1 ) )  mod 
N ) )
7069eqeq1d 2179 . . . . . . . . . 10  |-  ( y  =  A  ->  (
( ( y ^
( N  -  1 ) )  mod  N
)  =  1  <->  (
( A ^ ( N  -  1 ) )  mod  N )  =  1 ) )
71 oveq1 5857 . . . . . . . . . . . . 13  |-  ( y  =  A  ->  (
y ^ ( ( N  -  1 )  /  x ) )  =  ( A ^
( ( N  - 
1 )  /  x
) ) )
7271oveq1d 5865 . . . . . . . . . . . 12  |-  ( y  =  A  ->  (
( y ^ (
( N  -  1 )  /  x ) )  -  1 )  =  ( ( A ^ ( ( N  -  1 )  /  x ) )  - 
1 ) )
7372oveq1d 5865 . . . . . . . . . . 11  |-  ( y  =  A  ->  (
( ( y ^
( ( N  - 
1 )  /  x
) )  -  1 )  gcd  N )  =  ( ( ( A ^ ( ( N  -  1 )  /  x ) )  -  1 )  gcd 
N ) )
7473eqeq1d 2179 . . . . . . . . . 10  |-  ( y  =  A  ->  (
( ( ( y ^ ( ( N  -  1 )  /  x ) )  - 
1 )  gcd  N
)  =  1  <->  (
( ( A ^
( ( N  - 
1 )  /  x
) )  -  1 )  gcd  N )  =  1 ) )
7570, 74anbi12d 470 . . . . . . . . 9  |-  ( y  =  A  ->  (
( ( ( y ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( y ^ ( ( N  -  1 )  /  x ) )  -  1 )  gcd 
N )  =  1 )  <->  ( ( ( A ^ ( N  -  1 ) )  mod  N )  =  1  /\  ( ( ( A ^ (
( N  -  1 )  /  x ) )  -  1 )  gcd  N )  =  1 ) ) )
7675rspcev 2834 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( ( ( A ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( A ^ ( ( N  -  1 )  /  x ) )  -  1 )  gcd 
N )  =  1 ) )  ->  E. y  e.  ZZ  ( ( ( y ^ ( N  -  1 ) )  mod  N )  =  1  /\  ( ( ( y ^ (
( N  -  1 )  /  x ) )  -  1 )  gcd  N )  =  1 ) )
7767, 76mpan 422 . . . . . . 7  |-  ( ( ( ( A ^
( N  -  1 ) )  mod  N
)  =  1  /\  ( ( ( A ^ ( ( N  -  1 )  /  x ) )  - 
1 )  gcd  N
)  =  1 )  ->  E. y  e.  ZZ  ( ( ( y ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( y ^ ( ( N  -  1 )  /  x ) )  -  1 )  gcd 
N )  =  1 ) )
7849, 65, 77sylancr 412 . . . . . 6  |-  ( x  =  P  ->  E. y  e.  ZZ  ( ( ( y ^ ( N  -  1 ) )  mod  N )  =  1  /\  ( ( ( y ^ (
( N  -  1 )  /  x ) )  -  1 )  gcd  N )  =  1 ) )
7923, 78syl6bi 162 . . . . 5  |-  ( x  e.  Prime  ->  ( x 
||  ( P ^ E )  ->  E. y  e.  ZZ  ( ( ( y ^ ( N  -  1 ) )  mod  N )  =  1  /\  ( ( ( y ^ (
( N  -  1 )  /  x ) )  -  1 )  gcd  N )  =  1 ) ) )
8079rgen 2523 . . . 4  |-  A. x  e.  Prime  ( x  ||  ( P ^ E )  ->  E. y  e.  ZZ  ( ( ( y ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( y ^ ( ( N  -  1 )  /  x ) )  -  1 )  gcd 
N )  =  1 ) )
8180a1i 9 . . 3  |-  ( D  e.  NN  ->  A. x  e.  Prime  ( x  ||  ( P ^ E )  ->  E. y  e.  ZZ  ( ( ( y ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( y ^ ( ( N  -  1 )  /  x ) )  -  1 )  gcd 
N )  =  1 ) ) )
829, 10, 12, 21, 81pockthg 12296 . 2  |-  ( D  e.  NN  ->  N  e.  Prime )
831, 82ax-mp 5 1  |-  N  e. 
Prime
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449   class class class wbr 3987  (class class class)co 5850   RRcr 7760   0cc0 7761   1c1 7762    + caddc 7764    x. cmul 7766    < clt 7941    - cmin 8077    / cdiv 8576   NNcn 8865   NN0cn0 9122   ZZcz 9199   QQcq 9565    mod cmo 10265   ^cexp 10462    || cdvds 11736    gcd cgcd 11884   Primecprime 12048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-mulrcl 7860  ax-addcom 7861  ax-mulcom 7862  ax-addass 7863  ax-mulass 7864  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-1rid 7868  ax-0id 7869  ax-rnegex 7870  ax-precex 7871  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-apti 7876  ax-pre-ltadd 7877  ax-pre-mulgt0 7878  ax-pre-mulext 7879  ax-arch 7880  ax-caucvg 7881
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-irdg 6346  df-frec 6367  df-1o 6392  df-2o 6393  df-oadd 6396  df-er 6509  df-en 6715  df-dom 6716  df-fin 6717  df-sup 6957  df-inf 6958  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-reap 8481  df-ap 8488  df-div 8577  df-inn 8866  df-2 8924  df-3 8925  df-4 8926  df-n0 9123  df-xnn0 9186  df-z 9200  df-uz 9475  df-q 9566  df-rp 9598  df-fz 9953  df-fzo 10086  df-fl 10213  df-mod 10266  df-seqfrec 10389  df-exp 10463  df-ihash 10697  df-cj 10793  df-re 10794  df-im 10795  df-rsqrt 10949  df-abs 10950  df-clim 11229  df-proddc 11501  df-dvds 11737  df-gcd 11885  df-prm 12049  df-odz 12151  df-phi 12152  df-pc 12226
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator