| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pockthi | Unicode version | ||
| Description: Pocklington's theorem,
which gives a sufficient criterion for a number
|
| Ref | Expression |
|---|---|
| pockthi.p |
|
| pockthi.g |
|
| pockthi.m |
|
| pockthi.n |
|
| pockthi.d |
|
| pockthi.e |
|
| pockthi.a |
|
| pockthi.fac |
|
| pockthi.gt |
|
| pockthi.mod |
|
| pockthi.gcd |
|
| Ref | Expression |
|---|---|
| pockthi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pockthi.d |
. 2
| |
| 2 | pockthi.p |
. . . . . 6
| |
| 3 | prmnn 12507 |
. . . . . 6
| |
| 4 | 2, 3 | ax-mp 5 |
. . . . 5
|
| 5 | pockthi.e |
. . . . . 6
| |
| 6 | 5 | nnnn0i 9323 |
. . . . 5
|
| 7 | nnexpcl 10719 |
. . . . 5
| |
| 8 | 4, 6, 7 | mp2an 426 |
. . . 4
|
| 9 | 8 | a1i 9 |
. . 3
|
| 10 | id 19 |
. . 3
| |
| 11 | pockthi.gt |
. . . 4
| |
| 12 | 11 | a1i 9 |
. . 3
|
| 13 | pockthi.n |
. . . . 5
| |
| 14 | pockthi.fac |
. . . . . . 7
| |
| 15 | 1 | nncni 9066 |
. . . . . . . 8
|
| 16 | 8 | nncni 9066 |
. . . . . . . 8
|
| 17 | 15, 16 | mulcomi 8098 |
. . . . . . 7
|
| 18 | 14, 17 | eqtri 2227 |
. . . . . 6
|
| 19 | 18 | oveq1i 5967 |
. . . . 5
|
| 20 | 13, 19 | eqtri 2227 |
. . . 4
|
| 21 | 20 | a1i 9 |
. . 3
|
| 22 | prmdvdsexpb 12546 |
. . . . . . 7
| |
| 23 | 2, 5, 22 | mp3an23 1342 |
. . . . . 6
|
| 24 | pockthi.m |
. . . . . . . . . . . . 13
| |
| 25 | pockthi.g |
. . . . . . . . . . . . . 14
| |
| 26 | 25, 4 | nnmulcli 9078 |
. . . . . . . . . . . . 13
|
| 27 | 24, 26 | eqeltri 2279 |
. . . . . . . . . . . 12
|
| 28 | 27 | nncni 9066 |
. . . . . . . . . . 11
|
| 29 | ax-1cn 8038 |
. . . . . . . . . . 11
| |
| 30 | 28, 29, 13 | mvrraddi 8309 |
. . . . . . . . . 10
|
| 31 | 30 | oveq2i 5968 |
. . . . . . . . 9
|
| 32 | 31 | oveq1i 5967 |
. . . . . . . 8
|
| 33 | pockthi.mod |
. . . . . . . . 9
| |
| 34 | peano2nn 9068 |
. . . . . . . . . . . . 13
| |
| 35 | 27, 34 | ax-mp 5 |
. . . . . . . . . . . 12
|
| 36 | 13, 35 | eqeltri 2279 |
. . . . . . . . . . 11
|
| 37 | nnq 9774 |
. . . . . . . . . . 11
| |
| 38 | 36, 37 | ax-mp 5 |
. . . . . . . . . 10
|
| 39 | 27 | nngt0i 9086 |
. . . . . . . . . . . 12
|
| 40 | 27 | nnrei 9065 |
. . . . . . . . . . . . 13
|
| 41 | 1re 8091 |
. . . . . . . . . . . . 13
| |
| 42 | ltaddpos2 8546 |
. . . . . . . . . . . . 13
| |
| 43 | 40, 41, 42 | mp2an 426 |
. . . . . . . . . . . 12
|
| 44 | 39, 43 | mpbi 145 |
. . . . . . . . . . 11
|
| 45 | 44, 13 | breqtrri 4078 |
. . . . . . . . . 10
|
| 46 | q1mod 10523 |
. . . . . . . . . 10
| |
| 47 | 38, 45, 46 | mp2an 426 |
. . . . . . . . 9
|
| 48 | 33, 47 | eqtri 2227 |
. . . . . . . 8
|
| 49 | 32, 48 | eqtri 2227 |
. . . . . . 7
|
| 50 | oveq2 5965 |
. . . . . . . . . . . 12
| |
| 51 | 25 | nncni 9066 |
. . . . . . . . . . . . . . 15
|
| 52 | 4 | nncni 9066 |
. . . . . . . . . . . . . . 15
|
| 53 | 51, 52 | mulcomi 8098 |
. . . . . . . . . . . . . 14
|
| 54 | 30, 24, 53 | 3eqtrri 2232 |
. . . . . . . . . . . . 13
|
| 55 | 36 | nncni 9066 |
. . . . . . . . . . . . . . 15
|
| 56 | 55, 29 | subcli 8368 |
. . . . . . . . . . . . . 14
|
| 57 | 4 | nnap0i 9087 |
. . . . . . . . . . . . . 14
|
| 58 | 56, 52, 51, 57 | divmulapi 8859 |
. . . . . . . . . . . . 13
|
| 59 | 54, 58 | mpbir 146 |
. . . . . . . . . . . 12
|
| 60 | 50, 59 | eqtrdi 2255 |
. . . . . . . . . . 11
|
| 61 | 60 | oveq2d 5973 |
. . . . . . . . . 10
|
| 62 | 61 | oveq1d 5972 |
. . . . . . . . 9
|
| 63 | 62 | oveq1d 5972 |
. . . . . . . 8
|
| 64 | pockthi.gcd |
. . . . . . . 8
| |
| 65 | 63, 64 | eqtrdi 2255 |
. . . . . . 7
|
| 66 | pockthi.a |
. . . . . . . . 9
| |
| 67 | 66 | nnzi 9413 |
. . . . . . . 8
|
| 68 | oveq1 5964 |
. . . . . . . . . . . 12
| |
| 69 | 68 | oveq1d 5972 |
. . . . . . . . . . 11
|
| 70 | 69 | eqeq1d 2215 |
. . . . . . . . . 10
|
| 71 | oveq1 5964 |
. . . . . . . . . . . . 13
| |
| 72 | 71 | oveq1d 5972 |
. . . . . . . . . . . 12
|
| 73 | 72 | oveq1d 5972 |
. . . . . . . . . . 11
|
| 74 | 73 | eqeq1d 2215 |
. . . . . . . . . 10
|
| 75 | 70, 74 | anbi12d 473 |
. . . . . . . . 9
|
| 76 | 75 | rspcev 2881 |
. . . . . . . 8
|
| 77 | 67, 76 | mpan 424 |
. . . . . . 7
|
| 78 | 49, 65, 77 | sylancr 414 |
. . . . . 6
|
| 79 | 23, 78 | biimtrdi 163 |
. . . . 5
|
| 80 | 79 | rgen 2560 |
. . . 4
|
| 81 | 80 | a1i 9 |
. . 3
|
| 82 | 9, 10, 12, 21, 81 | pockthg 12755 |
. 2
|
| 83 | 1, 82 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 ax-pre-mulext 8063 ax-arch 8064 ax-caucvg 8065 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-po 4351 df-iso 4352 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-isom 5289 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-irdg 6469 df-frec 6490 df-1o 6515 df-2o 6516 df-oadd 6519 df-er 6633 df-en 6841 df-dom 6842 df-fin 6843 df-sup 7101 df-inf 7102 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-ap 8675 df-div 8766 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-n0 9316 df-xnn0 9379 df-z 9393 df-uz 9669 df-q 9761 df-rp 9796 df-fz 10151 df-fzo 10285 df-fl 10435 df-mod 10490 df-seqfrec 10615 df-exp 10706 df-ihash 10943 df-cj 11228 df-re 11229 df-im 11230 df-rsqrt 11384 df-abs 11385 df-clim 11665 df-proddc 11937 df-dvds 12174 df-gcd 12350 df-prm 12505 df-odz 12607 df-phi 12608 df-pc 12683 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |