ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pockthi Unicode version

Theorem pockthi 12288
Description: Pocklington's theorem, which gives a sufficient criterion for a number  N to be prime. This is the preferred method for verifying large primes, being much more efficient to compute than trial division. This form has been optimized for application to specific large primes; see pockthg 12287 for a more general closed-form version. (Contributed by Mario Carneiro, 2-Mar-2014.)
Hypotheses
Ref Expression
pockthi.p  |-  P  e. 
Prime
pockthi.g  |-  G  e.  NN
pockthi.m  |-  M  =  ( G  x.  P
)
pockthi.n  |-  N  =  ( M  +  1 )
pockthi.d  |-  D  e.  NN
pockthi.e  |-  E  e.  NN
pockthi.a  |-  A  e.  NN
pockthi.fac  |-  M  =  ( D  x.  ( P ^ E ) )
pockthi.gt  |-  D  < 
( P ^ E
)
pockthi.mod  |-  ( ( A ^ M )  mod  N )  =  ( 1  mod  N
)
pockthi.gcd  |-  ( ( ( A ^ G
)  -  1 )  gcd  N )  =  1
Assertion
Ref Expression
pockthi  |-  N  e. 
Prime

Proof of Theorem pockthi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pockthi.d . 2  |-  D  e.  NN
2 pockthi.p . . . . . 6  |-  P  e. 
Prime
3 prmnn 12042 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  NN )
42, 3ax-mp 5 . . . . 5  |-  P  e.  NN
5 pockthi.e . . . . . 6  |-  E  e.  NN
65nnnn0i 9122 . . . . 5  |-  E  e. 
NN0
7 nnexpcl 10468 . . . . 5  |-  ( ( P  e.  NN  /\  E  e.  NN0 )  -> 
( P ^ E
)  e.  NN )
84, 6, 7mp2an 423 . . . 4  |-  ( P ^ E )  e.  NN
98a1i 9 . . 3  |-  ( D  e.  NN  ->  ( P ^ E )  e.  NN )
10 id 19 . . 3  |-  ( D  e.  NN  ->  D  e.  NN )
11 pockthi.gt . . . 4  |-  D  < 
( P ^ E
)
1211a1i 9 . . 3  |-  ( D  e.  NN  ->  D  <  ( P ^ E
) )
13 pockthi.n . . . . 5  |-  N  =  ( M  +  1 )
14 pockthi.fac . . . . . . 7  |-  M  =  ( D  x.  ( P ^ E ) )
151nncni 8867 . . . . . . . 8  |-  D  e.  CC
168nncni 8867 . . . . . . . 8  |-  ( P ^ E )  e.  CC
1715, 16mulcomi 7905 . . . . . . 7  |-  ( D  x.  ( P ^ E ) )  =  ( ( P ^ E )  x.  D
)
1814, 17eqtri 2186 . . . . . 6  |-  M  =  ( ( P ^ E )  x.  D
)
1918oveq1i 5852 . . . . 5  |-  ( M  +  1 )  =  ( ( ( P ^ E )  x.  D )  +  1 )
2013, 19eqtri 2186 . . . 4  |-  N  =  ( ( ( P ^ E )  x.  D )  +  1 )
2120a1i 9 . . 3  |-  ( D  e.  NN  ->  N  =  ( ( ( P ^ E )  x.  D )  +  1 ) )
22 prmdvdsexpb 12081 . . . . . . 7  |-  ( ( x  e.  Prime  /\  P  e.  Prime  /\  E  e.  NN )  ->  ( x 
||  ( P ^ E )  <->  x  =  P ) )
232, 5, 22mp3an23 1319 . . . . . 6  |-  ( x  e.  Prime  ->  ( x 
||  ( P ^ E )  <->  x  =  P ) )
24 pockthi.m . . . . . . . . . . . . 13  |-  M  =  ( G  x.  P
)
25 pockthi.g . . . . . . . . . . . . . 14  |-  G  e.  NN
2625, 4nnmulcli 8879 . . . . . . . . . . . . 13  |-  ( G  x.  P )  e.  NN
2724, 26eqeltri 2239 . . . . . . . . . . . 12  |-  M  e.  NN
2827nncni 8867 . . . . . . . . . . 11  |-  M  e.  CC
29 ax-1cn 7846 . . . . . . . . . . 11  |-  1  e.  CC
3028, 29, 13mvrraddi 8115 . . . . . . . . . 10  |-  ( N  -  1 )  =  M
3130oveq2i 5853 . . . . . . . . 9  |-  ( A ^ ( N  - 
1 ) )  =  ( A ^ M
)
3231oveq1i 5852 . . . . . . . 8  |-  ( ( A ^ ( N  -  1 ) )  mod  N )  =  ( ( A ^ M )  mod  N
)
33 pockthi.mod . . . . . . . . 9  |-  ( ( A ^ M )  mod  N )  =  ( 1  mod  N
)
34 peano2nn 8869 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  ( M  +  1 )  e.  NN )
3527, 34ax-mp 5 . . . . . . . . . . . 12  |-  ( M  +  1 )  e.  NN
3613, 35eqeltri 2239 . . . . . . . . . . 11  |-  N  e.  NN
37 nnq 9571 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  N  e.  QQ )
3836, 37ax-mp 5 . . . . . . . . . 10  |-  N  e.  QQ
3927nngt0i 8887 . . . . . . . . . . . 12  |-  0  <  M
4027nnrei 8866 . . . . . . . . . . . . 13  |-  M  e.  RR
41 1re 7898 . . . . . . . . . . . . 13  |-  1  e.  RR
42 ltaddpos2 8351 . . . . . . . . . . . . 13  |-  ( ( M  e.  RR  /\  1  e.  RR )  ->  ( 0  <  M  <->  1  <  ( M  + 
1 ) ) )
4340, 41, 42mp2an 423 . . . . . . . . . . . 12  |-  ( 0  <  M  <->  1  <  ( M  +  1 ) )
4439, 43mpbi 144 . . . . . . . . . . 11  |-  1  <  ( M  +  1 )
4544, 13breqtrri 4009 . . . . . . . . . 10  |-  1  <  N
46 q1mod 10291 . . . . . . . . . 10  |-  ( ( N  e.  QQ  /\  1  <  N )  -> 
( 1  mod  N
)  =  1 )
4738, 45, 46mp2an 423 . . . . . . . . 9  |-  ( 1  mod  N )  =  1
4833, 47eqtri 2186 . . . . . . . 8  |-  ( ( A ^ M )  mod  N )  =  1
4932, 48eqtri 2186 . . . . . . 7  |-  ( ( A ^ ( N  -  1 ) )  mod  N )  =  1
50 oveq2 5850 . . . . . . . . . . . 12  |-  ( x  =  P  ->  (
( N  -  1 )  /  x )  =  ( ( N  -  1 )  /  P ) )
5125nncni 8867 . . . . . . . . . . . . . . 15  |-  G  e.  CC
524nncni 8867 . . . . . . . . . . . . . . 15  |-  P  e.  CC
5351, 52mulcomi 7905 . . . . . . . . . . . . . 14  |-  ( G  x.  P )  =  ( P  x.  G
)
5430, 24, 533eqtrri 2191 . . . . . . . . . . . . 13  |-  ( P  x.  G )  =  ( N  -  1 )
5536nncni 8867 . . . . . . . . . . . . . . 15  |-  N  e.  CC
5655, 29subcli 8174 . . . . . . . . . . . . . 14  |-  ( N  -  1 )  e.  CC
574nnap0i 8888 . . . . . . . . . . . . . 14  |-  P #  0
5856, 52, 51, 57divmulapi 8662 . . . . . . . . . . . . 13  |-  ( ( ( N  -  1 )  /  P )  =  G  <->  ( P  x.  G )  =  ( N  -  1 ) )
5954, 58mpbir 145 . . . . . . . . . . . 12  |-  ( ( N  -  1 )  /  P )  =  G
6050, 59eqtrdi 2215 . . . . . . . . . . 11  |-  ( x  =  P  ->  (
( N  -  1 )  /  x )  =  G )
6160oveq2d 5858 . . . . . . . . . 10  |-  ( x  =  P  ->  ( A ^ ( ( N  -  1 )  /  x ) )  =  ( A ^ G
) )
6261oveq1d 5857 . . . . . . . . 9  |-  ( x  =  P  ->  (
( A ^ (
( N  -  1 )  /  x ) )  -  1 )  =  ( ( A ^ G )  - 
1 ) )
6362oveq1d 5857 . . . . . . . 8  |-  ( x  =  P  ->  (
( ( A ^
( ( N  - 
1 )  /  x
) )  -  1 )  gcd  N )  =  ( ( ( A ^ G )  -  1 )  gcd 
N ) )
64 pockthi.gcd . . . . . . . 8  |-  ( ( ( A ^ G
)  -  1 )  gcd  N )  =  1
6563, 64eqtrdi 2215 . . . . . . 7  |-  ( x  =  P  ->  (
( ( A ^
( ( N  - 
1 )  /  x
) )  -  1 )  gcd  N )  =  1 )
66 pockthi.a . . . . . . . . 9  |-  A  e.  NN
6766nnzi 9212 . . . . . . . 8  |-  A  e.  ZZ
68 oveq1 5849 . . . . . . . . . . . 12  |-  ( y  =  A  ->  (
y ^ ( N  -  1 ) )  =  ( A ^
( N  -  1 ) ) )
6968oveq1d 5857 . . . . . . . . . . 11  |-  ( y  =  A  ->  (
( y ^ ( N  -  1 ) )  mod  N )  =  ( ( A ^ ( N  - 
1 ) )  mod 
N ) )
7069eqeq1d 2174 . . . . . . . . . 10  |-  ( y  =  A  ->  (
( ( y ^
( N  -  1 ) )  mod  N
)  =  1  <->  (
( A ^ ( N  -  1 ) )  mod  N )  =  1 ) )
71 oveq1 5849 . . . . . . . . . . . . 13  |-  ( y  =  A  ->  (
y ^ ( ( N  -  1 )  /  x ) )  =  ( A ^
( ( N  - 
1 )  /  x
) ) )
7271oveq1d 5857 . . . . . . . . . . . 12  |-  ( y  =  A  ->  (
( y ^ (
( N  -  1 )  /  x ) )  -  1 )  =  ( ( A ^ ( ( N  -  1 )  /  x ) )  - 
1 ) )
7372oveq1d 5857 . . . . . . . . . . 11  |-  ( y  =  A  ->  (
( ( y ^
( ( N  - 
1 )  /  x
) )  -  1 )  gcd  N )  =  ( ( ( A ^ ( ( N  -  1 )  /  x ) )  -  1 )  gcd 
N ) )
7473eqeq1d 2174 . . . . . . . . . 10  |-  ( y  =  A  ->  (
( ( ( y ^ ( ( N  -  1 )  /  x ) )  - 
1 )  gcd  N
)  =  1  <->  (
( ( A ^
( ( N  - 
1 )  /  x
) )  -  1 )  gcd  N )  =  1 ) )
7570, 74anbi12d 465 . . . . . . . . 9  |-  ( y  =  A  ->  (
( ( ( y ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( y ^ ( ( N  -  1 )  /  x ) )  -  1 )  gcd 
N )  =  1 )  <->  ( ( ( A ^ ( N  -  1 ) )  mod  N )  =  1  /\  ( ( ( A ^ (
( N  -  1 )  /  x ) )  -  1 )  gcd  N )  =  1 ) ) )
7675rspcev 2830 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( ( ( A ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( A ^ ( ( N  -  1 )  /  x ) )  -  1 )  gcd 
N )  =  1 ) )  ->  E. y  e.  ZZ  ( ( ( y ^ ( N  -  1 ) )  mod  N )  =  1  /\  ( ( ( y ^ (
( N  -  1 )  /  x ) )  -  1 )  gcd  N )  =  1 ) )
7767, 76mpan 421 . . . . . . 7  |-  ( ( ( ( A ^
( N  -  1 ) )  mod  N
)  =  1  /\  ( ( ( A ^ ( ( N  -  1 )  /  x ) )  - 
1 )  gcd  N
)  =  1 )  ->  E. y  e.  ZZ  ( ( ( y ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( y ^ ( ( N  -  1 )  /  x ) )  -  1 )  gcd 
N )  =  1 ) )
7849, 65, 77sylancr 411 . . . . . 6  |-  ( x  =  P  ->  E. y  e.  ZZ  ( ( ( y ^ ( N  -  1 ) )  mod  N )  =  1  /\  ( ( ( y ^ (
( N  -  1 )  /  x ) )  -  1 )  gcd  N )  =  1 ) )
7923, 78syl6bi 162 . . . . 5  |-  ( x  e.  Prime  ->  ( x 
||  ( P ^ E )  ->  E. y  e.  ZZ  ( ( ( y ^ ( N  -  1 ) )  mod  N )  =  1  /\  ( ( ( y ^ (
( N  -  1 )  /  x ) )  -  1 )  gcd  N )  =  1 ) ) )
8079rgen 2519 . . . 4  |-  A. x  e.  Prime  ( x  ||  ( P ^ E )  ->  E. y  e.  ZZ  ( ( ( y ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( y ^ ( ( N  -  1 )  /  x ) )  -  1 )  gcd 
N )  =  1 ) )
8180a1i 9 . . 3  |-  ( D  e.  NN  ->  A. x  e.  Prime  ( x  ||  ( P ^ E )  ->  E. y  e.  ZZ  ( ( ( y ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( y ^ ( ( N  -  1 )  /  x ) )  -  1 )  gcd 
N )  =  1 ) ) )
829, 10, 12, 21, 81pockthg 12287 . 2  |-  ( D  e.  NN  ->  N  e.  Prime )
831, 82ax-mp 5 1  |-  N  e. 
Prime
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   A.wral 2444   E.wrex 2445   class class class wbr 3982  (class class class)co 5842   RRcr 7752   0cc0 7753   1c1 7754    + caddc 7756    x. cmul 7758    < clt 7933    - cmin 8069    / cdiv 8568   NNcn 8857   NN0cn0 9114   ZZcz 9191   QQcq 9557    mod cmo 10257   ^cexp 10454    || cdvds 11727    gcd cgcd 11875   Primecprime 12039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-2o 6385  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-xnn0 9178  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-fl 10205  df-mod 10258  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-proddc 11492  df-dvds 11728  df-gcd 11876  df-prm 12040  df-odz 12142  df-phi 12143  df-pc 12217
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator