ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pockthi Unicode version

Theorem pockthi 12756
Description: Pocklington's theorem, which gives a sufficient criterion for a number  N to be prime. This is the preferred method for verifying large primes, being much more efficient to compute than trial division. This form has been optimized for application to specific large primes; see pockthg 12755 for a more general closed-form version. (Contributed by Mario Carneiro, 2-Mar-2014.)
Hypotheses
Ref Expression
pockthi.p  |-  P  e. 
Prime
pockthi.g  |-  G  e.  NN
pockthi.m  |-  M  =  ( G  x.  P
)
pockthi.n  |-  N  =  ( M  +  1 )
pockthi.d  |-  D  e.  NN
pockthi.e  |-  E  e.  NN
pockthi.a  |-  A  e.  NN
pockthi.fac  |-  M  =  ( D  x.  ( P ^ E ) )
pockthi.gt  |-  D  < 
( P ^ E
)
pockthi.mod  |-  ( ( A ^ M )  mod  N )  =  ( 1  mod  N
)
pockthi.gcd  |-  ( ( ( A ^ G
)  -  1 )  gcd  N )  =  1
Assertion
Ref Expression
pockthi  |-  N  e. 
Prime

Proof of Theorem pockthi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pockthi.d . 2  |-  D  e.  NN
2 pockthi.p . . . . . 6  |-  P  e. 
Prime
3 prmnn 12507 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  NN )
42, 3ax-mp 5 . . . . 5  |-  P  e.  NN
5 pockthi.e . . . . . 6  |-  E  e.  NN
65nnnn0i 9323 . . . . 5  |-  E  e. 
NN0
7 nnexpcl 10719 . . . . 5  |-  ( ( P  e.  NN  /\  E  e.  NN0 )  -> 
( P ^ E
)  e.  NN )
84, 6, 7mp2an 426 . . . 4  |-  ( P ^ E )  e.  NN
98a1i 9 . . 3  |-  ( D  e.  NN  ->  ( P ^ E )  e.  NN )
10 id 19 . . 3  |-  ( D  e.  NN  ->  D  e.  NN )
11 pockthi.gt . . . 4  |-  D  < 
( P ^ E
)
1211a1i 9 . . 3  |-  ( D  e.  NN  ->  D  <  ( P ^ E
) )
13 pockthi.n . . . . 5  |-  N  =  ( M  +  1 )
14 pockthi.fac . . . . . . 7  |-  M  =  ( D  x.  ( P ^ E ) )
151nncni 9066 . . . . . . . 8  |-  D  e.  CC
168nncni 9066 . . . . . . . 8  |-  ( P ^ E )  e.  CC
1715, 16mulcomi 8098 . . . . . . 7  |-  ( D  x.  ( P ^ E ) )  =  ( ( P ^ E )  x.  D
)
1814, 17eqtri 2227 . . . . . 6  |-  M  =  ( ( P ^ E )  x.  D
)
1918oveq1i 5967 . . . . 5  |-  ( M  +  1 )  =  ( ( ( P ^ E )  x.  D )  +  1 )
2013, 19eqtri 2227 . . . 4  |-  N  =  ( ( ( P ^ E )  x.  D )  +  1 )
2120a1i 9 . . 3  |-  ( D  e.  NN  ->  N  =  ( ( ( P ^ E )  x.  D )  +  1 ) )
22 prmdvdsexpb 12546 . . . . . . 7  |-  ( ( x  e.  Prime  /\  P  e.  Prime  /\  E  e.  NN )  ->  ( x 
||  ( P ^ E )  <->  x  =  P ) )
232, 5, 22mp3an23 1342 . . . . . 6  |-  ( x  e.  Prime  ->  ( x 
||  ( P ^ E )  <->  x  =  P ) )
24 pockthi.m . . . . . . . . . . . . 13  |-  M  =  ( G  x.  P
)
25 pockthi.g . . . . . . . . . . . . . 14  |-  G  e.  NN
2625, 4nnmulcli 9078 . . . . . . . . . . . . 13  |-  ( G  x.  P )  e.  NN
2724, 26eqeltri 2279 . . . . . . . . . . . 12  |-  M  e.  NN
2827nncni 9066 . . . . . . . . . . 11  |-  M  e.  CC
29 ax-1cn 8038 . . . . . . . . . . 11  |-  1  e.  CC
3028, 29, 13mvrraddi 8309 . . . . . . . . . 10  |-  ( N  -  1 )  =  M
3130oveq2i 5968 . . . . . . . . 9  |-  ( A ^ ( N  - 
1 ) )  =  ( A ^ M
)
3231oveq1i 5967 . . . . . . . 8  |-  ( ( A ^ ( N  -  1 ) )  mod  N )  =  ( ( A ^ M )  mod  N
)
33 pockthi.mod . . . . . . . . 9  |-  ( ( A ^ M )  mod  N )  =  ( 1  mod  N
)
34 peano2nn 9068 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  ( M  +  1 )  e.  NN )
3527, 34ax-mp 5 . . . . . . . . . . . 12  |-  ( M  +  1 )  e.  NN
3613, 35eqeltri 2279 . . . . . . . . . . 11  |-  N  e.  NN
37 nnq 9774 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  N  e.  QQ )
3836, 37ax-mp 5 . . . . . . . . . 10  |-  N  e.  QQ
3927nngt0i 9086 . . . . . . . . . . . 12  |-  0  <  M
4027nnrei 9065 . . . . . . . . . . . . 13  |-  M  e.  RR
41 1re 8091 . . . . . . . . . . . . 13  |-  1  e.  RR
42 ltaddpos2 8546 . . . . . . . . . . . . 13  |-  ( ( M  e.  RR  /\  1  e.  RR )  ->  ( 0  <  M  <->  1  <  ( M  + 
1 ) ) )
4340, 41, 42mp2an 426 . . . . . . . . . . . 12  |-  ( 0  <  M  <->  1  <  ( M  +  1 ) )
4439, 43mpbi 145 . . . . . . . . . . 11  |-  1  <  ( M  +  1 )
4544, 13breqtrri 4078 . . . . . . . . . 10  |-  1  <  N
46 q1mod 10523 . . . . . . . . . 10  |-  ( ( N  e.  QQ  /\  1  <  N )  -> 
( 1  mod  N
)  =  1 )
4738, 45, 46mp2an 426 . . . . . . . . 9  |-  ( 1  mod  N )  =  1
4833, 47eqtri 2227 . . . . . . . 8  |-  ( ( A ^ M )  mod  N )  =  1
4932, 48eqtri 2227 . . . . . . 7  |-  ( ( A ^ ( N  -  1 ) )  mod  N )  =  1
50 oveq2 5965 . . . . . . . . . . . 12  |-  ( x  =  P  ->  (
( N  -  1 )  /  x )  =  ( ( N  -  1 )  /  P ) )
5125nncni 9066 . . . . . . . . . . . . . . 15  |-  G  e.  CC
524nncni 9066 . . . . . . . . . . . . . . 15  |-  P  e.  CC
5351, 52mulcomi 8098 . . . . . . . . . . . . . 14  |-  ( G  x.  P )  =  ( P  x.  G
)
5430, 24, 533eqtrri 2232 . . . . . . . . . . . . 13  |-  ( P  x.  G )  =  ( N  -  1 )
5536nncni 9066 . . . . . . . . . . . . . . 15  |-  N  e.  CC
5655, 29subcli 8368 . . . . . . . . . . . . . 14  |-  ( N  -  1 )  e.  CC
574nnap0i 9087 . . . . . . . . . . . . . 14  |-  P #  0
5856, 52, 51, 57divmulapi 8859 . . . . . . . . . . . . 13  |-  ( ( ( N  -  1 )  /  P )  =  G  <->  ( P  x.  G )  =  ( N  -  1 ) )
5954, 58mpbir 146 . . . . . . . . . . . 12  |-  ( ( N  -  1 )  /  P )  =  G
6050, 59eqtrdi 2255 . . . . . . . . . . 11  |-  ( x  =  P  ->  (
( N  -  1 )  /  x )  =  G )
6160oveq2d 5973 . . . . . . . . . 10  |-  ( x  =  P  ->  ( A ^ ( ( N  -  1 )  /  x ) )  =  ( A ^ G
) )
6261oveq1d 5972 . . . . . . . . 9  |-  ( x  =  P  ->  (
( A ^ (
( N  -  1 )  /  x ) )  -  1 )  =  ( ( A ^ G )  - 
1 ) )
6362oveq1d 5972 . . . . . . . 8  |-  ( x  =  P  ->  (
( ( A ^
( ( N  - 
1 )  /  x
) )  -  1 )  gcd  N )  =  ( ( ( A ^ G )  -  1 )  gcd 
N ) )
64 pockthi.gcd . . . . . . . 8  |-  ( ( ( A ^ G
)  -  1 )  gcd  N )  =  1
6563, 64eqtrdi 2255 . . . . . . 7  |-  ( x  =  P  ->  (
( ( A ^
( ( N  - 
1 )  /  x
) )  -  1 )  gcd  N )  =  1 )
66 pockthi.a . . . . . . . . 9  |-  A  e.  NN
6766nnzi 9413 . . . . . . . 8  |-  A  e.  ZZ
68 oveq1 5964 . . . . . . . . . . . 12  |-  ( y  =  A  ->  (
y ^ ( N  -  1 ) )  =  ( A ^
( N  -  1 ) ) )
6968oveq1d 5972 . . . . . . . . . . 11  |-  ( y  =  A  ->  (
( y ^ ( N  -  1 ) )  mod  N )  =  ( ( A ^ ( N  - 
1 ) )  mod 
N ) )
7069eqeq1d 2215 . . . . . . . . . 10  |-  ( y  =  A  ->  (
( ( y ^
( N  -  1 ) )  mod  N
)  =  1  <->  (
( A ^ ( N  -  1 ) )  mod  N )  =  1 ) )
71 oveq1 5964 . . . . . . . . . . . . 13  |-  ( y  =  A  ->  (
y ^ ( ( N  -  1 )  /  x ) )  =  ( A ^
( ( N  - 
1 )  /  x
) ) )
7271oveq1d 5972 . . . . . . . . . . . 12  |-  ( y  =  A  ->  (
( y ^ (
( N  -  1 )  /  x ) )  -  1 )  =  ( ( A ^ ( ( N  -  1 )  /  x ) )  - 
1 ) )
7372oveq1d 5972 . . . . . . . . . . 11  |-  ( y  =  A  ->  (
( ( y ^
( ( N  - 
1 )  /  x
) )  -  1 )  gcd  N )  =  ( ( ( A ^ ( ( N  -  1 )  /  x ) )  -  1 )  gcd 
N ) )
7473eqeq1d 2215 . . . . . . . . . 10  |-  ( y  =  A  ->  (
( ( ( y ^ ( ( N  -  1 )  /  x ) )  - 
1 )  gcd  N
)  =  1  <->  (
( ( A ^
( ( N  - 
1 )  /  x
) )  -  1 )  gcd  N )  =  1 ) )
7570, 74anbi12d 473 . . . . . . . . 9  |-  ( y  =  A  ->  (
( ( ( y ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( y ^ ( ( N  -  1 )  /  x ) )  -  1 )  gcd 
N )  =  1 )  <->  ( ( ( A ^ ( N  -  1 ) )  mod  N )  =  1  /\  ( ( ( A ^ (
( N  -  1 )  /  x ) )  -  1 )  gcd  N )  =  1 ) ) )
7675rspcev 2881 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( ( ( A ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( A ^ ( ( N  -  1 )  /  x ) )  -  1 )  gcd 
N )  =  1 ) )  ->  E. y  e.  ZZ  ( ( ( y ^ ( N  -  1 ) )  mod  N )  =  1  /\  ( ( ( y ^ (
( N  -  1 )  /  x ) )  -  1 )  gcd  N )  =  1 ) )
7767, 76mpan 424 . . . . . . 7  |-  ( ( ( ( A ^
( N  -  1 ) )  mod  N
)  =  1  /\  ( ( ( A ^ ( ( N  -  1 )  /  x ) )  - 
1 )  gcd  N
)  =  1 )  ->  E. y  e.  ZZ  ( ( ( y ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( y ^ ( ( N  -  1 )  /  x ) )  -  1 )  gcd 
N )  =  1 ) )
7849, 65, 77sylancr 414 . . . . . 6  |-  ( x  =  P  ->  E. y  e.  ZZ  ( ( ( y ^ ( N  -  1 ) )  mod  N )  =  1  /\  ( ( ( y ^ (
( N  -  1 )  /  x ) )  -  1 )  gcd  N )  =  1 ) )
7923, 78biimtrdi 163 . . . . 5  |-  ( x  e.  Prime  ->  ( x 
||  ( P ^ E )  ->  E. y  e.  ZZ  ( ( ( y ^ ( N  -  1 ) )  mod  N )  =  1  /\  ( ( ( y ^ (
( N  -  1 )  /  x ) )  -  1 )  gcd  N )  =  1 ) ) )
8079rgen 2560 . . . 4  |-  A. x  e.  Prime  ( x  ||  ( P ^ E )  ->  E. y  e.  ZZ  ( ( ( y ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( y ^ ( ( N  -  1 )  /  x ) )  -  1 )  gcd 
N )  =  1 ) )
8180a1i 9 . . 3  |-  ( D  e.  NN  ->  A. x  e.  Prime  ( x  ||  ( P ^ E )  ->  E. y  e.  ZZ  ( ( ( y ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( y ^ ( ( N  -  1 )  /  x ) )  -  1 )  gcd 
N )  =  1 ) ) )
829, 10, 12, 21, 81pockthg 12755 . 2  |-  ( D  e.  NN  ->  N  e.  Prime )
831, 82ax-mp 5 1  |-  N  e. 
Prime
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177   A.wral 2485   E.wrex 2486   class class class wbr 4051  (class class class)co 5957   RRcr 7944   0cc0 7945   1c1 7946    + caddc 7948    x. cmul 7950    < clt 8127    - cmin 8263    / cdiv 8765   NNcn 9056   NN0cn0 9315   ZZcz 9392   QQcq 9760    mod cmo 10489   ^cexp 10705    || cdvds 12173    gcd cgcd 12349   Primecprime 12504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064  ax-caucvg 8065
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-isom 5289  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-irdg 6469  df-frec 6490  df-1o 6515  df-2o 6516  df-oadd 6519  df-er 6633  df-en 6841  df-dom 6842  df-fin 6843  df-sup 7101  df-inf 7102  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-n0 9316  df-xnn0 9379  df-z 9393  df-uz 9669  df-q 9761  df-rp 9796  df-fz 10151  df-fzo 10285  df-fl 10435  df-mod 10490  df-seqfrec 10615  df-exp 10706  df-ihash 10943  df-cj 11228  df-re 11229  df-im 11230  df-rsqrt 11384  df-abs 11385  df-clim 11665  df-proddc 11937  df-dvds 12174  df-gcd 12350  df-prm 12505  df-odz 12607  df-phi 12608  df-pc 12683
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator