ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tanval2ap Unicode version

Theorem tanval2ap 11654
Description: Express the tangent function directly in terms of  exp. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Jim Kingdon, 22-Dec-2022.)
Assertion
Ref Expression
tanval2ap  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( tan `  A )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( _i  x.  ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) ) ) )

Proof of Theorem tanval2ap
StepHypRef Expression
1 tanvalap 11649 . . 3  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( tan `  A )  =  ( ( sin `  A
)  /  ( cos `  A ) ) )
2 2cn 8928 . . . . . . 7  |-  2  e.  CC
3 ax-icn 7848 . . . . . . 7  |-  _i  e.  CC
42, 3mulcomi 7905 . . . . . 6  |-  ( 2  x.  _i )  =  ( _i  x.  2 )
54oveq2i 5853 . . . . 5  |-  ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( _i  x.  2 ) )
6 sinval 11643 . . . . . 6  |-  ( A  e.  CC  ->  ( sin `  A )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) ) )
76adantr 274 . . . . 5  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( sin `  A )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) ) )
8 simpl 108 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  A  e.  CC )
9 mulcl 7880 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
103, 8, 9sylancr 411 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  (
_i  x.  A )  e.  CC )
11 efcl 11605 . . . . . . . 8  |-  ( ( _i  x.  A )  e.  CC  ->  ( exp `  ( _i  x.  A ) )  e.  CC )
1210, 11syl 14 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( exp `  ( _i  x.  A ) )  e.  CC )
13 negicn 8099 . . . . . . . . 9  |-  -u _i  e.  CC
14 mulcl 7880 . . . . . . . . 9  |-  ( (
-u _i  e.  CC  /\  A  e.  CC )  ->  ( -u _i  x.  A )  e.  CC )
1513, 8, 14sylancr 411 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( -u _i  x.  A )  e.  CC )
16 efcl 11605 . . . . . . . 8  |-  ( (
-u _i  x.  A
)  e.  CC  ->  ( exp `  ( -u _i  x.  A ) )  e.  CC )
1715, 16syl 14 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( exp `  ( -u _i  x.  A ) )  e.  CC )
1812, 17subcld 8209 . . . . . 6  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  (
( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC )
193a1i 9 . . . . . 6  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  _i  e.  CC )
202a1i 9 . . . . . 6  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  2  e.  CC )
21 iap0 9080 . . . . . . 7  |-  _i #  0
2221a1i 9 . . . . . 6  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  _i #  0 )
23 2ap0 8950 . . . . . . 7  |-  2 #  0
2423a1i 9 . . . . . 6  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  2 #  0 )
2518, 19, 20, 22, 24divdivap1d 8718 . . . . 5  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  (
( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  _i )  / 
2 )  =  ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( _i  x.  2 ) ) )
265, 7, 253eqtr4a 2225 . . . 4  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( sin `  A )  =  ( ( ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  _i )  /  2 ) )
27 cosval 11644 . . . . 5  |-  ( A  e.  CC  ->  ( cos `  A )  =  ( ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) )
2827adantr 274 . . . 4  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( cos `  A )  =  ( ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) )
2926, 28oveq12d 5860 . . 3  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  (
( sin `  A
)  /  ( cos `  A ) )  =  ( ( ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  _i )  / 
2 )  /  (
( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) ) )
301, 29eqtrd 2198 . 2  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( tan `  A )  =  ( ( ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  _i )  / 
2 )  /  (
( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) ) )
3118, 19, 22divclapd 8686 . . 3  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  (
( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  _i )  e.  CC )
3212, 17addcld 7918 . . 3  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  (
( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  e.  CC )
33 simpr 109 . . . . 5  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( cos `  A ) #  0 )
3428, 33eqbrtrrd 4006 . . . 4  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  (
( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) #  0 )
3532, 20, 24divap0bd 8698 . . . 4  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  (
( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) #  0  <->  ( ( ( exp `  ( _i  x.  A ) )  +  ( exp `  ( -u _i  x.  A ) ) )  /  2
) #  0 ) )
3634, 35mpbird 166 . . 3  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  (
( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) #  0 )
3731, 32, 20, 36, 24divcanap7d 8715 . 2  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  (
( ( ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  _i )  /  2 )  / 
( ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) )  =  ( ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  _i )  / 
( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) ) )
3818, 19, 32, 22, 36divdivap1d 8718 . 2  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  (
( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  _i )  / 
( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) )  =  ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( _i  x.  ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) ) ) )
3930, 37, 383eqtrd 2202 1  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( tan `  A )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( _i  x.  ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   CCcc 7751   0cc0 7753   _ici 7755    + caddc 7756    x. cmul 7758    - cmin 8069   -ucneg 8070   # cap 8479    / cdiv 8568   2c2 8908   expce 11583   sincsin 11585   cosccos 11586   tanctan 11587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-ico 9830  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-fac 10639  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295  df-ef 11589  df-sin 11591  df-cos 11592  df-tan 11593
This theorem is referenced by:  tanval3ap  11655
  Copyright terms: Public domain W3C validator