ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tanval2ap Unicode version

Theorem tanval2ap 11878
Description: Express the tangent function directly in terms of  exp. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Jim Kingdon, 22-Dec-2022.)
Assertion
Ref Expression
tanval2ap  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( tan `  A )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( _i  x.  ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) ) ) )

Proof of Theorem tanval2ap
StepHypRef Expression
1 tanvalap 11873 . . 3  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( tan `  A )  =  ( ( sin `  A
)  /  ( cos `  A ) ) )
2 2cn 9061 . . . . . . 7  |-  2  e.  CC
3 ax-icn 7974 . . . . . . 7  |-  _i  e.  CC
42, 3mulcomi 8032 . . . . . 6  |-  ( 2  x.  _i )  =  ( _i  x.  2 )
54oveq2i 5933 . . . . 5  |-  ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( _i  x.  2 ) )
6 sinval 11867 . . . . . 6  |-  ( A  e.  CC  ->  ( sin `  A )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) ) )
76adantr 276 . . . . 5  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( sin `  A )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) ) )
8 simpl 109 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  A  e.  CC )
9 mulcl 8006 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
103, 8, 9sylancr 414 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  (
_i  x.  A )  e.  CC )
11 efcl 11829 . . . . . . . 8  |-  ( ( _i  x.  A )  e.  CC  ->  ( exp `  ( _i  x.  A ) )  e.  CC )
1210, 11syl 14 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( exp `  ( _i  x.  A ) )  e.  CC )
13 negicn 8227 . . . . . . . . 9  |-  -u _i  e.  CC
14 mulcl 8006 . . . . . . . . 9  |-  ( (
-u _i  e.  CC  /\  A  e.  CC )  ->  ( -u _i  x.  A )  e.  CC )
1513, 8, 14sylancr 414 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( -u _i  x.  A )  e.  CC )
16 efcl 11829 . . . . . . . 8  |-  ( (
-u _i  x.  A
)  e.  CC  ->  ( exp `  ( -u _i  x.  A ) )  e.  CC )
1715, 16syl 14 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( exp `  ( -u _i  x.  A ) )  e.  CC )
1812, 17subcld 8337 . . . . . 6  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  (
( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC )
193a1i 9 . . . . . 6  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  _i  e.  CC )
202a1i 9 . . . . . 6  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  2  e.  CC )
21 iap0 9214 . . . . . . 7  |-  _i #  0
2221a1i 9 . . . . . 6  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  _i #  0 )
23 2ap0 9083 . . . . . . 7  |-  2 #  0
2423a1i 9 . . . . . 6  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  2 #  0 )
2518, 19, 20, 22, 24divdivap1d 8849 . . . . 5  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  (
( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  _i )  / 
2 )  =  ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( _i  x.  2 ) ) )
265, 7, 253eqtr4a 2255 . . . 4  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( sin `  A )  =  ( ( ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  _i )  /  2 ) )
27 cosval 11868 . . . . 5  |-  ( A  e.  CC  ->  ( cos `  A )  =  ( ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) )
2827adantr 276 . . . 4  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( cos `  A )  =  ( ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) )
2926, 28oveq12d 5940 . . 3  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  (
( sin `  A
)  /  ( cos `  A ) )  =  ( ( ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  _i )  / 
2 )  /  (
( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) ) )
301, 29eqtrd 2229 . 2  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( tan `  A )  =  ( ( ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  _i )  / 
2 )  /  (
( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) ) )
3118, 19, 22divclapd 8817 . . 3  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  (
( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  _i )  e.  CC )
3212, 17addcld 8046 . . 3  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  (
( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  e.  CC )
33 simpr 110 . . . . 5  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( cos `  A ) #  0 )
3428, 33eqbrtrrd 4057 . . . 4  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  (
( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) #  0 )
3532, 20, 24divap0bd 8829 . . . 4  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  (
( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) #  0  <->  ( ( ( exp `  ( _i  x.  A ) )  +  ( exp `  ( -u _i  x.  A ) ) )  /  2
) #  0 ) )
3634, 35mpbird 167 . . 3  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  (
( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) #  0 )
3731, 32, 20, 36, 24divcanap7d 8846 . 2  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  (
( ( ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  _i )  /  2 )  / 
( ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) )  =  ( ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  _i )  / 
( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) ) )
3818, 19, 32, 22, 36divdivap1d 8849 . 2  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  (
( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  _i )  / 
( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) )  =  ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( _i  x.  ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) ) ) )
3930, 37, 383eqtrd 2233 1  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( tan `  A )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( _i  x.  ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   class class class wbr 4033   ` cfv 5258  (class class class)co 5922   CCcc 7877   0cc0 7879   _ici 7881    + caddc 7882    x. cmul 7884    - cmin 8197   -ucneg 8198   # cap 8608    / cdiv 8699   2c2 9041   expce 11807   sincsin 11809   cosccos 11810   tanctan 11811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-ico 9969  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-fac 10818  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519  df-ef 11813  df-sin 11815  df-cos 11816  df-tan 11817
This theorem is referenced by:  tanval3ap  11879
  Copyright terms: Public domain W3C validator