ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tanval2ap Unicode version

Theorem tanval2ap 11676
Description: Express the tangent function directly in terms of  exp. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Jim Kingdon, 22-Dec-2022.)
Assertion
Ref Expression
tanval2ap  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( tan `  A )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( _i  x.  ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) ) ) )

Proof of Theorem tanval2ap
StepHypRef Expression
1 tanvalap 11671 . . 3  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( tan `  A )  =  ( ( sin `  A
)  /  ( cos `  A ) ) )
2 2cn 8949 . . . . . . 7  |-  2  e.  CC
3 ax-icn 7869 . . . . . . 7  |-  _i  e.  CC
42, 3mulcomi 7926 . . . . . 6  |-  ( 2  x.  _i )  =  ( _i  x.  2 )
54oveq2i 5864 . . . . 5  |-  ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( _i  x.  2 ) )
6 sinval 11665 . . . . . 6  |-  ( A  e.  CC  ->  ( sin `  A )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) ) )
76adantr 274 . . . . 5  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( sin `  A )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) ) )
8 simpl 108 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  A  e.  CC )
9 mulcl 7901 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
103, 8, 9sylancr 412 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  (
_i  x.  A )  e.  CC )
11 efcl 11627 . . . . . . . 8  |-  ( ( _i  x.  A )  e.  CC  ->  ( exp `  ( _i  x.  A ) )  e.  CC )
1210, 11syl 14 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( exp `  ( _i  x.  A ) )  e.  CC )
13 negicn 8120 . . . . . . . . 9  |-  -u _i  e.  CC
14 mulcl 7901 . . . . . . . . 9  |-  ( (
-u _i  e.  CC  /\  A  e.  CC )  ->  ( -u _i  x.  A )  e.  CC )
1513, 8, 14sylancr 412 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( -u _i  x.  A )  e.  CC )
16 efcl 11627 . . . . . . . 8  |-  ( (
-u _i  x.  A
)  e.  CC  ->  ( exp `  ( -u _i  x.  A ) )  e.  CC )
1715, 16syl 14 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( exp `  ( -u _i  x.  A ) )  e.  CC )
1812, 17subcld 8230 . . . . . 6  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  (
( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC )
193a1i 9 . . . . . 6  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  _i  e.  CC )
202a1i 9 . . . . . 6  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  2  e.  CC )
21 iap0 9101 . . . . . . 7  |-  _i #  0
2221a1i 9 . . . . . 6  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  _i #  0 )
23 2ap0 8971 . . . . . . 7  |-  2 #  0
2423a1i 9 . . . . . 6  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  2 #  0 )
2518, 19, 20, 22, 24divdivap1d 8739 . . . . 5  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  (
( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  _i )  / 
2 )  =  ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( _i  x.  2 ) ) )
265, 7, 253eqtr4a 2229 . . . 4  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( sin `  A )  =  ( ( ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  _i )  /  2 ) )
27 cosval 11666 . . . . 5  |-  ( A  e.  CC  ->  ( cos `  A )  =  ( ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) )
2827adantr 274 . . . 4  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( cos `  A )  =  ( ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) )
2926, 28oveq12d 5871 . . 3  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  (
( sin `  A
)  /  ( cos `  A ) )  =  ( ( ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  _i )  / 
2 )  /  (
( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) ) )
301, 29eqtrd 2203 . 2  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( tan `  A )  =  ( ( ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  _i )  / 
2 )  /  (
( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) ) )
3118, 19, 22divclapd 8707 . . 3  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  (
( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  _i )  e.  CC )
3212, 17addcld 7939 . . 3  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  (
( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  e.  CC )
33 simpr 109 . . . . 5  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( cos `  A ) #  0 )
3428, 33eqbrtrrd 4013 . . . 4  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  (
( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) #  0 )
3532, 20, 24divap0bd 8719 . . . 4  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  (
( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) #  0  <->  ( ( ( exp `  ( _i  x.  A ) )  +  ( exp `  ( -u _i  x.  A ) ) )  /  2
) #  0 ) )
3634, 35mpbird 166 . . 3  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  (
( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) #  0 )
3731, 32, 20, 36, 24divcanap7d 8736 . 2  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  (
( ( ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  _i )  /  2 )  / 
( ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) )  =  ( ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  _i )  / 
( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) ) )
3818, 19, 32, 22, 36divdivap1d 8739 . 2  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  (
( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  _i )  / 
( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) )  =  ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( _i  x.  ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) ) ) )
3930, 37, 383eqtrd 2207 1  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( tan `  A )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( _i  x.  ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   CCcc 7772   0cc0 7774   _ici 7776    + caddc 7777    x. cmul 7779    - cmin 8090   -ucneg 8091   # cap 8500    / cdiv 8589   2c2 8929   expce 11605   sincsin 11607   cosccos 11608   tanctan 11609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-ico 9851  df-fz 9966  df-fzo 10099  df-seqfrec 10402  df-exp 10476  df-fac 10660  df-ihash 10710  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-sumdc 11317  df-ef 11611  df-sin 11613  df-cos 11614  df-tan 11615
This theorem is referenced by:  tanval3ap  11677
  Copyright terms: Public domain W3C validator