Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > numma2c | Unicode version |
Description: Perform a multiply-add of two decimal integers and against a fixed multiplicand (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
numma.1 | |
numma.2 | |
numma.3 | |
numma.4 | |
numma.5 | |
numma.6 | |
numma.7 | |
numma2c.8 | |
numma2c.9 | |
numma2c.10 | |
numma2c.11 | |
numma2c.12 |
Ref | Expression |
---|---|
numma2c |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numma2c.8 | . . . . 5 | |
2 | 1 | nn0cni 9081 | . . . 4 |
3 | numma.6 | . . . . . 6 | |
4 | numma.1 | . . . . . . 7 | |
5 | numma.2 | . . . . . . 7 | |
6 | numma.3 | . . . . . . 7 | |
7 | 4, 5, 6 | numcl 9286 | . . . . . 6 |
8 | 3, 7 | eqeltri 2227 | . . . . 5 |
9 | 8 | nn0cni 9081 | . . . 4 |
10 | 2, 9 | mulcomi 7863 | . . 3 |
11 | 10 | oveq1i 5824 | . 2 |
12 | numma.4 | . . 3 | |
13 | numma.5 | . . 3 | |
14 | numma.7 | . . 3 | |
15 | numma2c.9 | . . 3 | |
16 | numma2c.10 | . . 3 | |
17 | 5 | nn0cni 9081 | . . . . . 6 |
18 | 17, 2 | mulcomi 7863 | . . . . 5 |
19 | 18 | oveq1i 5824 | . . . 4 |
20 | numma2c.11 | . . . 4 | |
21 | 19, 20 | eqtri 2175 | . . 3 |
22 | 6 | nn0cni 9081 | . . . . . 6 |
23 | 22, 2 | mulcomi 7863 | . . . . 5 |
24 | 23 | oveq1i 5824 | . . . 4 |
25 | numma2c.12 | . . . 4 | |
26 | 24, 25 | eqtri 2175 | . . 3 |
27 | 4, 5, 6, 12, 13, 3, 14, 1, 15, 16, 21, 26 | nummac 9318 | . 2 |
28 | 11, 27 | eqtri 2175 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1332 wcel 2125 (class class class)co 5814 caddc 7714 cmul 7716 cn0 9069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-setind 4490 ax-cnex 7802 ax-resscn 7803 ax-1cn 7804 ax-1re 7805 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-addcom 7811 ax-mulcom 7812 ax-addass 7813 ax-mulass 7814 ax-distr 7815 ax-i2m1 7816 ax-1rid 7818 ax-0id 7819 ax-rnegex 7820 ax-cnre 7822 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-br 3962 df-opab 4022 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-iota 5128 df-fun 5165 df-fv 5171 df-riota 5770 df-ov 5817 df-oprab 5818 df-mpo 5819 df-sub 8027 df-inn 8813 df-n0 9070 |
This theorem is referenced by: decma2c 9326 |
Copyright terms: Public domain | W3C validator |