ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  numma2c Unicode version

Theorem numma2c 9619
Description: Perform a multiply-add of two decimal integers  M and  N against a fixed multiplicand  P (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numma.1  |-  T  e. 
NN0
numma.2  |-  A  e. 
NN0
numma.3  |-  B  e. 
NN0
numma.4  |-  C  e. 
NN0
numma.5  |-  D  e. 
NN0
numma.6  |-  M  =  ( ( T  x.  A )  +  B
)
numma.7  |-  N  =  ( ( T  x.  C )  +  D
)
numma2c.8  |-  P  e. 
NN0
numma2c.9  |-  F  e. 
NN0
numma2c.10  |-  G  e. 
NN0
numma2c.11  |-  ( ( P  x.  A )  +  ( C  +  G ) )  =  E
numma2c.12  |-  ( ( P  x.  B )  +  D )  =  ( ( T  x.  G )  +  F
)
Assertion
Ref Expression
numma2c  |-  ( ( P  x.  M )  +  N )  =  ( ( T  x.  E )  +  F
)

Proof of Theorem numma2c
StepHypRef Expression
1 numma2c.8 . . . . 5  |-  P  e. 
NN0
21nn0cni 9377 . . . 4  |-  P  e.  CC
3 numma.6 . . . . . 6  |-  M  =  ( ( T  x.  A )  +  B
)
4 numma.1 . . . . . . 7  |-  T  e. 
NN0
5 numma.2 . . . . . . 7  |-  A  e. 
NN0
6 numma.3 . . . . . . 7  |-  B  e. 
NN0
74, 5, 6numcl 9586 . . . . . 6  |-  ( ( T  x.  A )  +  B )  e. 
NN0
83, 7eqeltri 2302 . . . . 5  |-  M  e. 
NN0
98nn0cni 9377 . . . 4  |-  M  e.  CC
102, 9mulcomi 8148 . . 3  |-  ( P  x.  M )  =  ( M  x.  P
)
1110oveq1i 6010 . 2  |-  ( ( P  x.  M )  +  N )  =  ( ( M  x.  P )  +  N
)
12 numma.4 . . 3  |-  C  e. 
NN0
13 numma.5 . . 3  |-  D  e. 
NN0
14 numma.7 . . 3  |-  N  =  ( ( T  x.  C )  +  D
)
15 numma2c.9 . . 3  |-  F  e. 
NN0
16 numma2c.10 . . 3  |-  G  e. 
NN0
175nn0cni 9377 . . . . . 6  |-  A  e.  CC
1817, 2mulcomi 8148 . . . . 5  |-  ( A  x.  P )  =  ( P  x.  A
)
1918oveq1i 6010 . . . 4  |-  ( ( A  x.  P )  +  ( C  +  G ) )  =  ( ( P  x.  A )  +  ( C  +  G ) )
20 numma2c.11 . . . 4  |-  ( ( P  x.  A )  +  ( C  +  G ) )  =  E
2119, 20eqtri 2250 . . 3  |-  ( ( A  x.  P )  +  ( C  +  G ) )  =  E
226nn0cni 9377 . . . . . 6  |-  B  e.  CC
2322, 2mulcomi 8148 . . . . 5  |-  ( B  x.  P )  =  ( P  x.  B
)
2423oveq1i 6010 . . . 4  |-  ( ( B  x.  P )  +  D )  =  ( ( P  x.  B )  +  D
)
25 numma2c.12 . . . 4  |-  ( ( P  x.  B )  +  D )  =  ( ( T  x.  G )  +  F
)
2624, 25eqtri 2250 . . 3  |-  ( ( B  x.  P )  +  D )  =  ( ( T  x.  G )  +  F
)
274, 5, 6, 12, 13, 3, 14, 1, 15, 16, 21, 26nummac 9618 . 2  |-  ( ( M  x.  P )  +  N )  =  ( ( T  x.  E )  +  F
)
2811, 27eqtri 2250 1  |-  ( ( P  x.  M )  +  N )  =  ( ( T  x.  E )  +  F
)
Colors of variables: wff set class
Syntax hints:    = wceq 1395    e. wcel 2200  (class class class)co 6000    + caddc 7998    x. cmul 8000   NN0cn0 9365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-sub 8315  df-inn 9107  df-n0 9366
This theorem is referenced by:  decma2c  9626
  Copyright terms: Public domain W3C validator