ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpri Unicode version

Theorem elpri 3641
Description: If a class is an element of a pair, then it is one of the two paired elements. (Contributed by Scott Fenton, 1-Apr-2011.)
Assertion
Ref Expression
elpri  |-  ( A  e.  { B ,  C }  ->  ( A  =  B  \/  A  =  C ) )

Proof of Theorem elpri
StepHypRef Expression
1 elprg 3638 . 2  |-  ( A  e.  { B ,  C }  ->  ( A  e.  { B ,  C }  <->  ( A  =  B  \/  A  =  C ) ) )
21ibi 176 1  |-  ( A  e.  { B ,  C }  ->  ( A  =  B  \/  A  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 709    = wceq 1364    e. wcel 2164   {cpr 3619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625
This theorem is referenced by:  nelpri  3642  nelprd  3644  opth1  4265  0nelop  4277  ontr2exmid  4557  onintexmid  4605  reg3exmidlemwe  4611  funtpg  5305  ftpg  5742  acexmidlemcase  5913  2oconcl  6492  el2oss1o  6496  pw2f1odclem  6890  en2eqpr  6963  eldju1st  7130  nninfisol  7192  finomni  7199  exmidomniim  7200  ismkvnex  7214  nninfwlpoimlemginf  7235  exmidonfinlem  7253  exmidfodomrlemr  7262  exmidfodomrlemrALT  7263  exmidaclem  7268  sup3exmid  8976  m1expcl2  10632  maxleim  11349  maxleast  11357  zmaxcl  11368  minmax  11373  xrmaxleim  11387  xrmaxaddlem  11403  xrminmax  11408  nninfctlemfo  12177  prm23lt5  12401  unct  12599  fnpr2ob  12923  fvprif  12926  xpsfeq  12928  qtopbas  14690  limcimolemlt  14818  recnprss  14841  coseq0negpitopi  14971  lgslem4  15119  lgseisenlem2  15187  2lgsoddprmlem3  15199  012of  15486  2o01f  15487  nninfalllem1  15498  nninfall  15499  nninfsellemqall  15505  nninfomnilem  15508  trilpolemclim  15526  trilpolemcl  15527  trilpolemisumle  15528  trilpolemeq1  15530  trilpolemlt1  15531  iswomni0  15541  nconstwlpolemgt0  15554  nconstwlpolem  15555
  Copyright terms: Public domain W3C validator