Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elpri | Unicode version |
Description: If a class is an element of a pair, then it is one of the two paired elements. (Contributed by Scott Fenton, 1-Apr-2011.) |
Ref | Expression |
---|---|
elpri |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elprg 3580 | . 2 | |
2 | 1 | ibi 175 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wo 698 wceq 1335 wcel 2128 cpr 3561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-un 3106 df-sn 3566 df-pr 3567 |
This theorem is referenced by: nelpri 3584 nelprd 3586 opth1 4196 0nelop 4208 ontr2exmid 4483 onintexmid 4531 reg3exmidlemwe 4537 funtpg 5220 ftpg 5650 acexmidlemcase 5816 2oconcl 6383 el2oss1o 6387 en2eqpr 6849 eldju1st 7009 nninfisol 7070 finomni 7077 exmidomniim 7078 ismkvnex 7092 exmidonfinlem 7122 exmidfodomrlemr 7131 exmidfodomrlemrALT 7132 exmidaclem 7137 sup3exmid 8822 m1expcl2 10434 maxleim 11098 maxleast 11106 zmaxcl 11117 minmax 11122 xrmaxleim 11134 xrmaxaddlem 11150 xrminmax 11155 unct 12154 qtopbas 12893 limcimolemlt 13004 recnprss 13027 coseq0negpitopi 13128 012of 13538 2o01f 13539 nninfalllem1 13551 nninfall 13552 nninfsellemqall 13558 nninfomnilem 13561 trilpolemclim 13578 trilpolemcl 13579 trilpolemisumle 13580 trilpolemeq1 13582 trilpolemlt1 13583 iswomni0 13593 nconstwlpolemgt0 13605 nconstwlpolem 13606 |
Copyright terms: Public domain | W3C validator |