Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elpri | Unicode version |
Description: If a class is an element of a pair, then it is one of the two paired elements. (Contributed by Scott Fenton, 1-Apr-2011.) |
Ref | Expression |
---|---|
elpri |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elprg 3595 | . 2 | |
2 | 1 | ibi 175 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wo 698 wceq 1343 wcel 2136 cpr 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-v 2727 df-un 3119 df-sn 3581 df-pr 3582 |
This theorem is referenced by: nelpri 3599 nelprd 3601 opth1 4213 0nelop 4225 ontr2exmid 4501 onintexmid 4549 reg3exmidlemwe 4555 funtpg 5238 ftpg 5668 acexmidlemcase 5836 2oconcl 6403 el2oss1o 6407 en2eqpr 6869 eldju1st 7032 nninfisol 7093 finomni 7100 exmidomniim 7101 ismkvnex 7115 exmidonfinlem 7145 exmidfodomrlemr 7154 exmidfodomrlemrALT 7155 exmidaclem 7160 sup3exmid 8848 m1expcl2 10473 maxleim 11143 maxleast 11151 zmaxcl 11162 minmax 11167 xrmaxleim 11181 xrmaxaddlem 11197 xrminmax 11202 prm23lt5 12191 unct 12371 qtopbas 13122 limcimolemlt 13233 recnprss 13256 coseq0negpitopi 13357 lgslem4 13504 012of 13835 2o01f 13836 nninfalllem1 13848 nninfall 13849 nninfsellemqall 13855 nninfomnilem 13858 trilpolemclim 13875 trilpolemcl 13876 trilpolemisumle 13877 trilpolemeq1 13879 trilpolemlt1 13880 iswomni0 13890 nconstwlpolemgt0 13902 nconstwlpolem 13903 |
Copyright terms: Public domain | W3C validator |