ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mob Unicode version

Theorem mob 2908
Description: Equality implied by "at most one". (Contributed by NM, 18-Feb-2006.)
Hypotheses
Ref Expression
moi.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
moi.2  |-  ( x  =  B  ->  ( ph 
<->  ch ) )
Assertion
Ref Expression
mob  |-  ( ( ( A  e.  C  /\  B  e.  D
)  /\  E* x ph  /\  ps )  -> 
( A  =  B  <->  ch ) )
Distinct variable groups:    x, A    x, B    ch, x    ps, x
Allowed substitution hints:    ph( x)    C( x)    D( x)

Proof of Theorem mob
StepHypRef Expression
1 elex 2737 . . . . 5  |-  ( B  e.  D  ->  B  e.  _V )
2 nfcv 2308 . . . . . . . 8  |-  F/_ x A
3 nfv 1516 . . . . . . . . . 10  |-  F/ x  B  e.  _V
4 nfmo1 2026 . . . . . . . . . 10  |-  F/ x E* x ph
5 nfv 1516 . . . . . . . . . 10  |-  F/ x ps
63, 4, 5nf3an 1554 . . . . . . . . 9  |-  F/ x
( B  e.  _V  /\ 
E* x ph  /\  ps )
7 nfv 1516 . . . . . . . . 9  |-  F/ x
( A  =  B  <->  ch )
86, 7nfim 1560 . . . . . . . 8  |-  F/ x
( ( B  e. 
_V  /\  E* x ph  /\  ps )  -> 
( A  =  B  <->  ch ) )
9 moi.1 . . . . . . . . . 10  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
1093anbi3d 1308 . . . . . . . . 9  |-  ( x  =  A  ->  (
( B  e.  _V  /\ 
E* x ph  /\  ph )  <->  ( B  e. 
_V  /\  E* x ph  /\  ps ) ) )
11 eqeq1 2172 . . . . . . . . . 10  |-  ( x  =  A  ->  (
x  =  B  <->  A  =  B ) )
1211bibi1d 232 . . . . . . . . 9  |-  ( x  =  A  ->  (
( x  =  B  <->  ch )  <->  ( A  =  B  <->  ch ) ) )
1310, 12imbi12d 233 . . . . . . . 8  |-  ( x  =  A  ->  (
( ( B  e. 
_V  /\  E* x ph  /\  ph )  -> 
( x  =  B  <->  ch ) )  <->  ( ( B  e.  _V  /\  E* x ph  /\  ps )  ->  ( A  =  B  <->  ch ) ) ) )
14 moi.2 . . . . . . . . 9  |-  ( x  =  B  ->  ( ph 
<->  ch ) )
1514mob2 2906 . . . . . . . 8  |-  ( ( B  e.  _V  /\  E* x ph  /\  ph )  ->  ( x  =  B  <->  ch ) )
162, 8, 13, 15vtoclgf 2784 . . . . . . 7  |-  ( A  e.  C  ->  (
( B  e.  _V  /\ 
E* x ph  /\  ps )  ->  ( A  =  B  <->  ch )
) )
1716com12 30 . . . . . 6  |-  ( ( B  e.  _V  /\  E* x ph  /\  ps )  ->  ( A  e.  C  ->  ( A  =  B  <->  ch ) ) )
18173expib 1196 . . . . 5  |-  ( B  e.  _V  ->  (
( E* x ph  /\ 
ps )  ->  ( A  e.  C  ->  ( A  =  B  <->  ch )
) ) )
191, 18syl 14 . . . 4  |-  ( B  e.  D  ->  (
( E* x ph  /\ 
ps )  ->  ( A  e.  C  ->  ( A  =  B  <->  ch )
) ) )
2019com3r 79 . . 3  |-  ( A  e.  C  ->  ( B  e.  D  ->  ( ( E* x ph  /\ 
ps )  ->  ( A  =  B  <->  ch )
) ) )
2120imp 123 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( ( E* x ph  /\  ps )  -> 
( A  =  B  <->  ch ) ) )
22213impib 1191 1  |-  ( ( ( A  e.  C  /\  B  e.  D
)  /\  E* x ph  /\  ps )  -> 
( A  =  B  <->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343   E*wmo 2015    e. wcel 2136   _Vcvv 2726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728
This theorem is referenced by:  moi  2909  rmob  3043
  Copyright terms: Public domain W3C validator