ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfdju Unicode version

Theorem nfdju 7007
Description: Bound-variable hypothesis builder for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
Hypotheses
Ref Expression
nfdju.1  |-  F/_ x A
nfdju.2  |-  F/_ x B
Assertion
Ref Expression
nfdju  |-  F/_ x
( A B )

Proof of Theorem nfdju
StepHypRef Expression
1 df-dju 7003 . 2  |-  ( A B )  =  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )
2 nfcv 2308 . . . 4  |-  F/_ x { (/) }
3 nfdju.1 . . . 4  |-  F/_ x A
42, 3nfxp 4631 . . 3  |-  F/_ x
( { (/) }  X.  A )
5 nfcv 2308 . . . 4  |-  F/_ x { 1o }
6 nfdju.2 . . . 4  |-  F/_ x B
75, 6nfxp 4631 . . 3  |-  F/_ x
( { 1o }  X.  B )
84, 7nfun 3278 . 2  |-  F/_ x
( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B ) )
91, 8nfcxfr 2305 1  |-  F/_ x
( A B )
Colors of variables: wff set class
Syntax hints:   F/_wnfc 2295    u. cun 3114   (/)c0 3409   {csn 3576    X. cxp 4602   1oc1o 6377   ⊔ cdju 7002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-un 3120  df-opab 4044  df-xp 4610  df-dju 7003
This theorem is referenced by:  ctiunctal  12374
  Copyright terms: Public domain W3C validator