ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfdju Unicode version

Theorem nfdju 7144
Description: Bound-variable hypothesis builder for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
Hypotheses
Ref Expression
nfdju.1  |-  F/_ x A
nfdju.2  |-  F/_ x B
Assertion
Ref Expression
nfdju  |-  F/_ x
( A B )

Proof of Theorem nfdju
StepHypRef Expression
1 df-dju 7140 . 2  |-  ( A B )  =  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )
2 nfcv 2348 . . . 4  |-  F/_ x { (/) }
3 nfdju.1 . . . 4  |-  F/_ x A
42, 3nfxp 4702 . . 3  |-  F/_ x
( { (/) }  X.  A )
5 nfcv 2348 . . . 4  |-  F/_ x { 1o }
6 nfdju.2 . . . 4  |-  F/_ x B
75, 6nfxp 4702 . . 3  |-  F/_ x
( { 1o }  X.  B )
84, 7nfun 3329 . 2  |-  F/_ x
( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B ) )
91, 8nfcxfr 2345 1  |-  F/_ x
( A B )
Colors of variables: wff set class
Syntax hints:   F/_wnfc 2335    u. cun 3164   (/)c0 3460   {csn 3633    X. cxp 4673   1oc1o 6495   ⊔ cdju 7139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-un 3170  df-opab 4106  df-xp 4681  df-dju 7140
This theorem is referenced by:  ctiunctal  12812
  Copyright terms: Public domain W3C validator