ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfdju Unicode version

Theorem nfdju 7055
Description: Bound-variable hypothesis builder for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
Hypotheses
Ref Expression
nfdju.1  |-  F/_ x A
nfdju.2  |-  F/_ x B
Assertion
Ref Expression
nfdju  |-  F/_ x
( A B )

Proof of Theorem nfdju
StepHypRef Expression
1 df-dju 7051 . 2  |-  ( A B )  =  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )
2 nfcv 2329 . . . 4  |-  F/_ x { (/) }
3 nfdju.1 . . . 4  |-  F/_ x A
42, 3nfxp 4665 . . 3  |-  F/_ x
( { (/) }  X.  A )
5 nfcv 2329 . . . 4  |-  F/_ x { 1o }
6 nfdju.2 . . . 4  |-  F/_ x B
75, 6nfxp 4665 . . 3  |-  F/_ x
( { 1o }  X.  B )
84, 7nfun 3303 . 2  |-  F/_ x
( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B ) )
91, 8nfcxfr 2326 1  |-  F/_ x
( A B )
Colors of variables: wff set class
Syntax hints:   F/_wnfc 2316    u. cun 3139   (/)c0 3434   {csn 3604    X. cxp 4636   1oc1o 6424   ⊔ cdju 7050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-un 3145  df-opab 4077  df-xp 4644  df-dju 7051
This theorem is referenced by:  ctiunctal  12456
  Copyright terms: Public domain W3C validator