Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfdju | Unicode version |
Description: Bound-variable hypothesis builder for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.) |
Ref | Expression |
---|---|
nfdju.1 | |
nfdju.2 |
Ref | Expression |
---|---|
nfdju | ⊔ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dju 7015 | . 2 ⊔ | |
2 | nfcv 2312 | . . . 4 | |
3 | nfdju.1 | . . . 4 | |
4 | 2, 3 | nfxp 4638 | . . 3 |
5 | nfcv 2312 | . . . 4 | |
6 | nfdju.2 | . . . 4 | |
7 | 5, 6 | nfxp 4638 | . . 3 |
8 | 4, 7 | nfun 3283 | . 2 |
9 | 1, 8 | nfcxfr 2309 | 1 ⊔ |
Colors of variables: wff set class |
Syntax hints: wnfc 2299 cun 3119 c0 3414 csn 3583 cxp 4609 c1o 6388 ⊔ cdju 7014 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-un 3125 df-opab 4051 df-xp 4617 df-dju 7015 |
This theorem is referenced by: ctiunctal 12396 |
Copyright terms: Public domain | W3C validator |