ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfdju Unicode version

Theorem nfdju 7019
Description: Bound-variable hypothesis builder for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
Hypotheses
Ref Expression
nfdju.1  |-  F/_ x A
nfdju.2  |-  F/_ x B
Assertion
Ref Expression
nfdju  |-  F/_ x
( A B )

Proof of Theorem nfdju
StepHypRef Expression
1 df-dju 7015 . 2  |-  ( A B )  =  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )
2 nfcv 2312 . . . 4  |-  F/_ x { (/) }
3 nfdju.1 . . . 4  |-  F/_ x A
42, 3nfxp 4638 . . 3  |-  F/_ x
( { (/) }  X.  A )
5 nfcv 2312 . . . 4  |-  F/_ x { 1o }
6 nfdju.2 . . . 4  |-  F/_ x B
75, 6nfxp 4638 . . 3  |-  F/_ x
( { 1o }  X.  B )
84, 7nfun 3283 . 2  |-  F/_ x
( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B ) )
91, 8nfcxfr 2309 1  |-  F/_ x
( A B )
Colors of variables: wff set class
Syntax hints:   F/_wnfc 2299    u. cun 3119   (/)c0 3414   {csn 3583    X. cxp 4609   1oc1o 6388   ⊔ cdju 7014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-un 3125  df-opab 4051  df-xp 4617  df-dju 7015
This theorem is referenced by:  ctiunctal  12396
  Copyright terms: Public domain W3C validator