Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfdju | GIF version |
Description: Bound-variable hypothesis builder for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.) |
Ref | Expression |
---|---|
nfdju.1 | ⊢ Ⅎ𝑥𝐴 |
nfdju.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfdju | ⊢ Ⅎ𝑥(𝐴 ⊔ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dju 7027 | . 2 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
2 | nfcv 2317 | . . . 4 ⊢ Ⅎ𝑥{∅} | |
3 | nfdju.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | 2, 3 | nfxp 4647 | . . 3 ⊢ Ⅎ𝑥({∅} × 𝐴) |
5 | nfcv 2317 | . . . 4 ⊢ Ⅎ𝑥{1o} | |
6 | nfdju.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
7 | 5, 6 | nfxp 4647 | . . 3 ⊢ Ⅎ𝑥({1o} × 𝐵) |
8 | 4, 7 | nfun 3289 | . 2 ⊢ Ⅎ𝑥(({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
9 | 1, 8 | nfcxfr 2314 | 1 ⊢ Ⅎ𝑥(𝐴 ⊔ 𝐵) |
Colors of variables: wff set class |
Syntax hints: Ⅎwnfc 2304 ∪ cun 3125 ∅c0 3420 {csn 3589 × cxp 4618 1oc1o 6400 ⊔ cdju 7026 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-un 3131 df-opab 4060 df-xp 4626 df-dju 7027 |
This theorem is referenced by: ctiunctal 12407 |
Copyright terms: Public domain | W3C validator |