| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfdju | GIF version | ||
| Description: Bound-variable hypothesis builder for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| nfdju.1 | ⊢ Ⅎ𝑥𝐴 |
| nfdju.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfdju | ⊢ Ⅎ𝑥(𝐴 ⊔ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dju 7104 | . 2 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
| 2 | nfcv 2339 | . . . 4 ⊢ Ⅎ𝑥{∅} | |
| 3 | nfdju.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | 2, 3 | nfxp 4690 | . . 3 ⊢ Ⅎ𝑥({∅} × 𝐴) |
| 5 | nfcv 2339 | . . . 4 ⊢ Ⅎ𝑥{1o} | |
| 6 | nfdju.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 7 | 5, 6 | nfxp 4690 | . . 3 ⊢ Ⅎ𝑥({1o} × 𝐵) |
| 8 | 4, 7 | nfun 3319 | . 2 ⊢ Ⅎ𝑥(({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
| 9 | 1, 8 | nfcxfr 2336 | 1 ⊢ Ⅎ𝑥(𝐴 ⊔ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnfc 2326 ∪ cun 3155 ∅c0 3450 {csn 3622 × cxp 4661 1oc1o 6467 ⊔ cdju 7103 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-un 3161 df-opab 4095 df-xp 4669 df-dju 7104 |
| This theorem is referenced by: ctiunctal 12658 |
| Copyright terms: Public domain | W3C validator |