ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfdju GIF version

Theorem nfdju 7007
Description: Bound-variable hypothesis builder for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
Hypotheses
Ref Expression
nfdju.1 𝑥𝐴
nfdju.2 𝑥𝐵
Assertion
Ref Expression
nfdju 𝑥(𝐴𝐵)

Proof of Theorem nfdju
StepHypRef Expression
1 df-dju 7003 . 2 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
2 nfcv 2308 . . . 4 𝑥{∅}
3 nfdju.1 . . . 4 𝑥𝐴
42, 3nfxp 4631 . . 3 𝑥({∅} × 𝐴)
5 nfcv 2308 . . . 4 𝑥{1o}
6 nfdju.2 . . . 4 𝑥𝐵
75, 6nfxp 4631 . . 3 𝑥({1o} × 𝐵)
84, 7nfun 3278 . 2 𝑥(({∅} × 𝐴) ∪ ({1o} × 𝐵))
91, 8nfcxfr 2305 1 𝑥(𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wnfc 2295  cun 3114  c0 3409  {csn 3576   × cxp 4602  1oc1o 6377  cdju 7002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-un 3120  df-opab 4044  df-xp 4610  df-dju 7003
This theorem is referenced by:  ctiunctal  12374
  Copyright terms: Public domain W3C validator