![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfdju | GIF version |
Description: Bound-variable hypothesis builder for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.) |
Ref | Expression |
---|---|
nfdju.1 | ⊢ Ⅎ𝑥𝐴 |
nfdju.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfdju | ⊢ Ⅎ𝑥(𝐴 ⊔ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dju 7039 | . 2 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
2 | nfcv 2319 | . . . 4 ⊢ Ⅎ𝑥{∅} | |
3 | nfdju.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | 2, 3 | nfxp 4655 | . . 3 ⊢ Ⅎ𝑥({∅} × 𝐴) |
5 | nfcv 2319 | . . . 4 ⊢ Ⅎ𝑥{1o} | |
6 | nfdju.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
7 | 5, 6 | nfxp 4655 | . . 3 ⊢ Ⅎ𝑥({1o} × 𝐵) |
8 | 4, 7 | nfun 3293 | . 2 ⊢ Ⅎ𝑥(({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
9 | 1, 8 | nfcxfr 2316 | 1 ⊢ Ⅎ𝑥(𝐴 ⊔ 𝐵) |
Colors of variables: wff set class |
Syntax hints: Ⅎwnfc 2306 ∪ cun 3129 ∅c0 3424 {csn 3594 × cxp 4626 1oc1o 6412 ⊔ cdju 7038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-un 3135 df-opab 4067 df-xp 4634 df-dju 7039 |
This theorem is referenced by: ctiunctal 12444 |
Copyright terms: Public domain | W3C validator |