![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfdju | GIF version |
Description: Bound-variable hypothesis builder for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.) |
Ref | Expression |
---|---|
nfdju.1 | ⊢ Ⅎ𝑥𝐴 |
nfdju.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfdju | ⊢ Ⅎ𝑥(𝐴 ⊔ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dju 7097 | . 2 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
2 | nfcv 2336 | . . . 4 ⊢ Ⅎ𝑥{∅} | |
3 | nfdju.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | 2, 3 | nfxp 4686 | . . 3 ⊢ Ⅎ𝑥({∅} × 𝐴) |
5 | nfcv 2336 | . . . 4 ⊢ Ⅎ𝑥{1o} | |
6 | nfdju.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
7 | 5, 6 | nfxp 4686 | . . 3 ⊢ Ⅎ𝑥({1o} × 𝐵) |
8 | 4, 7 | nfun 3315 | . 2 ⊢ Ⅎ𝑥(({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
9 | 1, 8 | nfcxfr 2333 | 1 ⊢ Ⅎ𝑥(𝐴 ⊔ 𝐵) |
Colors of variables: wff set class |
Syntax hints: Ⅎwnfc 2323 ∪ cun 3151 ∅c0 3446 {csn 3618 × cxp 4657 1oc1o 6462 ⊔ cdju 7096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-un 3157 df-opab 4091 df-xp 4665 df-dju 7097 |
This theorem is referenced by: ctiunctal 12598 |
Copyright terms: Public domain | W3C validator |