ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfdju GIF version

Theorem nfdju 7126
Description: Bound-variable hypothesis builder for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
Hypotheses
Ref Expression
nfdju.1 𝑥𝐴
nfdju.2 𝑥𝐵
Assertion
Ref Expression
nfdju 𝑥(𝐴𝐵)

Proof of Theorem nfdju
StepHypRef Expression
1 df-dju 7122 . 2 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
2 nfcv 2347 . . . 4 𝑥{∅}
3 nfdju.1 . . . 4 𝑥𝐴
42, 3nfxp 4700 . . 3 𝑥({∅} × 𝐴)
5 nfcv 2347 . . . 4 𝑥{1o}
6 nfdju.2 . . . 4 𝑥𝐵
75, 6nfxp 4700 . . 3 𝑥({1o} × 𝐵)
84, 7nfun 3328 . 2 𝑥(({∅} × 𝐴) ∪ ({1o} × 𝐵))
91, 8nfcxfr 2344 1 𝑥(𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wnfc 2334  cun 3163  c0 3459  {csn 3632   × cxp 4671  1oc1o 6485  cdju 7121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-un 3169  df-opab 4105  df-xp 4679  df-dju 7122
This theorem is referenced by:  ctiunctal  12731
  Copyright terms: Public domain W3C validator