ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuex Unicode version

Theorem djuex 7210
Description: The disjoint union of sets is a set. See also the more precise djuss 7237. (Contributed by AV, 28-Jun-2022.)
Assertion
Ref Expression
djuex  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A B )  e.  _V )

Proof of Theorem djuex
StepHypRef Expression
1 df-dju 7205 . 2  |-  ( A B )  =  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )
2 p0ex 4272 . . . . . . 7  |-  { (/) }  e.  _V
32a1i 9 . . . . . 6  |-  ( B  e.  W  ->  { (/) }  e.  _V )
43anim1i 340 . . . . 5  |-  ( ( B  e.  W  /\  A  e.  V )  ->  ( { (/) }  e.  _V  /\  A  e.  V
) )
54ancoms 268 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { (/) }  e.  _V  /\  A  e.  V
) )
6 xpexg 4833 . . . 4  |-  ( ( { (/) }  e.  _V  /\  A  e.  V )  ->  ( { (/) }  X.  A )  e. 
_V )
75, 6syl 14 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { (/) }  X.  A )  e.  _V )
8 1on 6569 . . . . . . 7  |-  1o  e.  On
98elexi 2812 . . . . . 6  |-  1o  e.  _V
109snex 4269 . . . . 5  |-  { 1o }  e.  _V
1110a1i 9 . . . 4  |-  ( A  e.  V  ->  { 1o }  e.  _V )
12 xpexg 4833 . . . 4  |-  ( ( { 1o }  e.  _V  /\  B  e.  W
)  ->  ( { 1o }  X.  B )  e.  _V )
1311, 12sylan 283 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { 1o }  X.  B )  e.  _V )
14 unexg 4534 . . 3  |-  ( ( ( { (/) }  X.  A )  e.  _V  /\  ( { 1o }  X.  B )  e.  _V )  ->  ( ( {
(/) }  X.  A
)  u.  ( { 1o }  X.  B
) )  e.  _V )
157, 13, 14syl2anc 411 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B ) )  e. 
_V )
161, 15eqeltrid 2316 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A B )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2200   _Vcvv 2799    u. cun 3195   (/)c0 3491   {csn 3666   Oncon0 4454    X. cxp 4717   1oc1o 6555   ⊔ cdju 7204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-opab 4146  df-tr 4183  df-iord 4457  df-on 4459  df-suc 4462  df-xp 4725  df-1o 6562  df-dju 7205
This theorem is referenced by:  djuexb  7211  updjud  7249  djudom  7260  exmidfodomrlemr  7380  exmidfodomrlemrALT  7381  djudoml  7401  djudomr  7402  exmidsbthrlem  16390  sbthom  16394
  Copyright terms: Public domain W3C validator