ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuex Unicode version

Theorem djuex 6894
Description: The disjoint union of sets is a set. See also the more precise djuss 6921. (Contributed by AV, 28-Jun-2022.)
Assertion
Ref Expression
djuex  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A B )  e.  _V )

Proof of Theorem djuex
StepHypRef Expression
1 df-dju 6889 . 2  |-  ( A B )  =  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )
2 p0ex 4080 . . . . . . 7  |-  { (/) }  e.  _V
32a1i 9 . . . . . 6  |-  ( B  e.  W  ->  { (/) }  e.  _V )
43anim1i 336 . . . . 5  |-  ( ( B  e.  W  /\  A  e.  V )  ->  ( { (/) }  e.  _V  /\  A  e.  V
) )
54ancoms 266 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { (/) }  e.  _V  /\  A  e.  V
) )
6 xpexg 4621 . . . 4  |-  ( ( { (/) }  e.  _V  /\  A  e.  V )  ->  ( { (/) }  X.  A )  e. 
_V )
75, 6syl 14 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { (/) }  X.  A )  e.  _V )
8 1on 6286 . . . . . . 7  |-  1o  e.  On
98elexi 2670 . . . . . 6  |-  1o  e.  _V
109snex 4077 . . . . 5  |-  { 1o }  e.  _V
1110a1i 9 . . . 4  |-  ( A  e.  V  ->  { 1o }  e.  _V )
12 xpexg 4621 . . . 4  |-  ( ( { 1o }  e.  _V  /\  B  e.  W
)  ->  ( { 1o }  X.  B )  e.  _V )
1311, 12sylan 279 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { 1o }  X.  B )  e.  _V )
14 unexg 4332 . . 3  |-  ( ( ( { (/) }  X.  A )  e.  _V  /\  ( { 1o }  X.  B )  e.  _V )  ->  ( ( {
(/) }  X.  A
)  u.  ( { 1o }  X.  B
) )  e.  _V )
157, 13, 14syl2anc 406 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B ) )  e. 
_V )
161, 15eqeltrid 2202 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A B )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 1463   _Vcvv 2658    u. cun 3037   (/)c0 3331   {csn 3495   Oncon0 4253    X. cxp 4505   1oc1o 6272   ⊔ cdju 6888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-v 2660  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-opab 3958  df-tr 3995  df-iord 4256  df-on 4258  df-suc 4261  df-xp 4513  df-1o 6279  df-dju 6889
This theorem is referenced by:  djuexb  6895  updjud  6933  djudom  6944  exmidfodomrlemr  7022  exmidfodomrlemrALT  7023  djudoml  7039  djudomr  7040  exmidsbthrlem  13028  sbthom  13032
  Copyright terms: Public domain W3C validator