ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuex Unicode version

Theorem djuex 7044
Description: The disjoint union of sets is a set. See also the more precise djuss 7071. (Contributed by AV, 28-Jun-2022.)
Assertion
Ref Expression
djuex  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A B )  e.  _V )

Proof of Theorem djuex
StepHypRef Expression
1 df-dju 7039 . 2  |-  ( A B )  =  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )
2 p0ex 4190 . . . . . . 7  |-  { (/) }  e.  _V
32a1i 9 . . . . . 6  |-  ( B  e.  W  ->  { (/) }  e.  _V )
43anim1i 340 . . . . 5  |-  ( ( B  e.  W  /\  A  e.  V )  ->  ( { (/) }  e.  _V  /\  A  e.  V
) )
54ancoms 268 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { (/) }  e.  _V  /\  A  e.  V
) )
6 xpexg 4742 . . . 4  |-  ( ( { (/) }  e.  _V  /\  A  e.  V )  ->  ( { (/) }  X.  A )  e. 
_V )
75, 6syl 14 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { (/) }  X.  A )  e.  _V )
8 1on 6426 . . . . . . 7  |-  1o  e.  On
98elexi 2751 . . . . . 6  |-  1o  e.  _V
109snex 4187 . . . . 5  |-  { 1o }  e.  _V
1110a1i 9 . . . 4  |-  ( A  e.  V  ->  { 1o }  e.  _V )
12 xpexg 4742 . . . 4  |-  ( ( { 1o }  e.  _V  /\  B  e.  W
)  ->  ( { 1o }  X.  B )  e.  _V )
1311, 12sylan 283 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { 1o }  X.  B )  e.  _V )
14 unexg 4445 . . 3  |-  ( ( ( { (/) }  X.  A )  e.  _V  /\  ( { 1o }  X.  B )  e.  _V )  ->  ( ( {
(/) }  X.  A
)  u.  ( { 1o }  X.  B
) )  e.  _V )
157, 13, 14syl2anc 411 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B ) )  e. 
_V )
161, 15eqeltrid 2264 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A B )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2148   _Vcvv 2739    u. cun 3129   (/)c0 3424   {csn 3594   Oncon0 4365    X. cxp 4626   1oc1o 6412   ⊔ cdju 7038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-opab 4067  df-tr 4104  df-iord 4368  df-on 4370  df-suc 4373  df-xp 4634  df-1o 6419  df-dju 7039
This theorem is referenced by:  djuexb  7045  updjud  7083  djudom  7094  exmidfodomrlemr  7203  exmidfodomrlemrALT  7204  djudoml  7220  djudomr  7221  exmidsbthrlem  14809  sbthom  14813
  Copyright terms: Public domain W3C validator