ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuex Unicode version

Theorem djuex 7102
Description: The disjoint union of sets is a set. See also the more precise djuss 7129. (Contributed by AV, 28-Jun-2022.)
Assertion
Ref Expression
djuex  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A B )  e.  _V )

Proof of Theorem djuex
StepHypRef Expression
1 df-dju 7097 . 2  |-  ( A B )  =  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )
2 p0ex 4217 . . . . . . 7  |-  { (/) }  e.  _V
32a1i 9 . . . . . 6  |-  ( B  e.  W  ->  { (/) }  e.  _V )
43anim1i 340 . . . . 5  |-  ( ( B  e.  W  /\  A  e.  V )  ->  ( { (/) }  e.  _V  /\  A  e.  V
) )
54ancoms 268 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { (/) }  e.  _V  /\  A  e.  V
) )
6 xpexg 4773 . . . 4  |-  ( ( { (/) }  e.  _V  /\  A  e.  V )  ->  ( { (/) }  X.  A )  e. 
_V )
75, 6syl 14 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { (/) }  X.  A )  e.  _V )
8 1on 6476 . . . . . . 7  |-  1o  e.  On
98elexi 2772 . . . . . 6  |-  1o  e.  _V
109snex 4214 . . . . 5  |-  { 1o }  e.  _V
1110a1i 9 . . . 4  |-  ( A  e.  V  ->  { 1o }  e.  _V )
12 xpexg 4773 . . . 4  |-  ( ( { 1o }  e.  _V  /\  B  e.  W
)  ->  ( { 1o }  X.  B )  e.  _V )
1311, 12sylan 283 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { 1o }  X.  B )  e.  _V )
14 unexg 4474 . . 3  |-  ( ( ( { (/) }  X.  A )  e.  _V  /\  ( { 1o }  X.  B )  e.  _V )  ->  ( ( {
(/) }  X.  A
)  u.  ( { 1o }  X.  B
) )  e.  _V )
157, 13, 14syl2anc 411 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B ) )  e. 
_V )
161, 15eqeltrid 2280 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A B )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2164   _Vcvv 2760    u. cun 3151   (/)c0 3446   {csn 3618   Oncon0 4394    X. cxp 4657   1oc1o 6462   ⊔ cdju 7096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-opab 4091  df-tr 4128  df-iord 4397  df-on 4399  df-suc 4402  df-xp 4665  df-1o 6469  df-dju 7097
This theorem is referenced by:  djuexb  7103  updjud  7141  djudom  7152  exmidfodomrlemr  7262  exmidfodomrlemrALT  7263  djudoml  7279  djudomr  7280  exmidsbthrlem  15512  sbthom  15516
  Copyright terms: Public domain W3C validator