Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > djuex | Unicode version |
Description: The disjoint union of sets is a set. See also the more precise djuss 7035. (Contributed by AV, 28-Jun-2022.) |
Ref | Expression |
---|---|
djuex | ⊔ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dju 7003 | . 2 ⊔ | |
2 | p0ex 4167 | . . . . . . 7 | |
3 | 2 | a1i 9 | . . . . . 6 |
4 | 3 | anim1i 338 | . . . . 5 |
5 | 4 | ancoms 266 | . . . 4 |
6 | xpexg 4718 | . . . 4 | |
7 | 5, 6 | syl 14 | . . 3 |
8 | 1on 6391 | . . . . . . 7 | |
9 | 8 | elexi 2738 | . . . . . 6 |
10 | 9 | snex 4164 | . . . . 5 |
11 | 10 | a1i 9 | . . . 4 |
12 | xpexg 4718 | . . . 4 | |
13 | 11, 12 | sylan 281 | . . 3 |
14 | unexg 4421 | . . 3 | |
15 | 7, 13, 14 | syl2anc 409 | . 2 |
16 | 1, 15 | eqeltrid 2253 | 1 ⊔ |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2136 cvv 2726 cun 3114 c0 3409 csn 3576 con0 4341 cxp 4602 c1o 6377 ⊔ cdju 7002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-opab 4044 df-tr 4081 df-iord 4344 df-on 4346 df-suc 4349 df-xp 4610 df-1o 6384 df-dju 7003 |
This theorem is referenced by: djuexb 7009 updjud 7047 djudom 7058 exmidfodomrlemr 7158 exmidfodomrlemrALT 7159 djudoml 7175 djudomr 7176 exmidsbthrlem 13901 sbthom 13905 |
Copyright terms: Public domain | W3C validator |