ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctiunctal Unicode version

Theorem ctiunctal 12383
Description: Variation of ctiunct 12382 which allows  x to be present in  ph. (Contributed by Jim Kingdon, 5-May-2024.)
Hypotheses
Ref Expression
ctiunctal.a  |-  ( ph  ->  F : om -onto-> ( A 1o ) )
ctiunctal.b  |-  ( ph  ->  A. x  e.  A  G : om -onto-> ( B 1o ) )
Assertion
Ref Expression
ctiunctal  |-  ( ph  ->  E. h  h : om -onto-> ( U_ x  e.  A  B 1o ) )
Distinct variable groups:    A, h, x    B, h    x, F
Allowed substitution hints:    ph( x, h)    B( x)    F( h)    G( x, h)

Proof of Theorem ctiunctal
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ctiunctal.a . . 3  |-  ( ph  ->  F : om -onto-> ( A 1o ) )
2 ctiunctal.b . . . . 5  |-  ( ph  ->  A. x  e.  A  G : om -onto-> ( B 1o ) )
3 nfv 1521 . . . . . 6  |-  F/ y  G : om -onto-> ( B 1o )
4 nfcsb1v 3082 . . . . . . 7  |-  F/_ x [_ y  /  x ]_ G
5 nfcv 2312 . . . . . . 7  |-  F/_ x om
6 nfcsb1v 3082 . . . . . . . 8  |-  F/_ x [_ y  /  x ]_ B
7 nfcv 2312 . . . . . . . 8  |-  F/_ x 1o
86, 7nfdju 7015 . . . . . . 7  |-  F/_ x
( [_ y  /  x ]_ B 1o )
94, 5, 8nffo 5417 . . . . . 6  |-  F/ x [_ y  /  x ]_ G : om -onto-> ( [_ y  /  x ]_ B 1o )
10 csbeq1a 3058 . . . . . . 7  |-  ( x  =  y  ->  G  =  [_ y  /  x ]_ G )
11 eqidd 2171 . . . . . . 7  |-  ( x  =  y  ->  om  =  om )
12 csbeq1a 3058 . . . . . . . 8  |-  ( x  =  y  ->  B  =  [_ y  /  x ]_ B )
13 djueq1 7013 . . . . . . . 8  |-  ( B  =  [_ y  /  x ]_ B  ->  ( B 1o )  =  (
[_ y  /  x ]_ B 1o ) )
1412, 13syl 14 . . . . . . 7  |-  ( x  =  y  ->  ( B 1o )  =  (
[_ y  /  x ]_ B 1o ) )
1510, 11, 14foeq123d 5434 . . . . . 6  |-  ( x  =  y  ->  ( G : om -onto-> ( B 1o )  <->  [_ y  /  x ]_ G : om -onto-> ( [_ y  /  x ]_ B 1o ) ) )
163, 9, 15cbvral 2692 . . . . 5  |-  ( A. x  e.  A  G : om -onto-> ( B 1o )  <->  A. y  e.  A  [_ y  /  x ]_ G : om -onto-> ( [_ y  /  x ]_ B 1o ) )
172, 16sylib 121 . . . 4  |-  ( ph  ->  A. y  e.  A  [_ y  /  x ]_ G : om -onto-> ( [_ y  /  x ]_ B 1o ) )
1817r19.21bi 2558 . . 3  |-  ( (
ph  /\  y  e.  A )  ->  [_ y  /  x ]_ G : om -onto-> ( [_ y  /  x ]_ B 1o ) )
191, 18ctiunct 12382 . 2  |-  ( ph  ->  E. h  h : om -onto-> ( U_ y  e.  A  [_ y  /  x ]_ B 1o )
)
20 nfcv 2312 . . . . 5  |-  F/_ y B
2120, 6, 12cbviun 3908 . . . 4  |-  U_ x  e.  A  B  =  U_ y  e.  A  [_ y  /  x ]_ B
22 djueq1 7013 . . . 4  |-  ( U_ x  e.  A  B  =  U_ y  e.  A  [_ y  /  x ]_ B  ->  ( U_ x  e.  A  B 1o )  =  ( U_ y  e.  A  [_ y  /  x ]_ B 1o )
)
23 foeq3 5416 . . . 4  |-  ( (
U_ x  e.  A  B 1o )  =  (
U_ y  e.  A  [_ y  /  x ]_ B 1o )  ->  (
h : om -onto-> ( U_ x  e.  A  B 1o )  <->  h : om -onto-> ( U_ y  e.  A  [_ y  /  x ]_ B 1o )
) )
2421, 22, 23mp2b 8 . . 3  |-  ( h : om -onto-> ( U_ x  e.  A  B 1o )  <->  h : om -onto->
( U_ y  e.  A  [_ y  /  x ]_ B 1o ) )
2524exbii 1598 . 2  |-  ( E. h  h : om -onto->
( U_ x  e.  A  B 1o )  <->  E. h  h : om -onto-> ( U_ y  e.  A  [_ y  /  x ]_ B 1o ) )
2619, 25sylibr 133 1  |-  ( ph  ->  E. h  h : om -onto-> ( U_ x  e.  A  B 1o ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1348   E.wex 1485   A.wral 2448   [_csb 3049   U_ciun 3871   omcom 4572   -onto->wfo 5194   1oc1o 6385   ⊔ cdju 7010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-mulrcl 7860  ax-addcom 7861  ax-mulcom 7862  ax-addass 7863  ax-mulass 7864  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-1rid 7868  ax-0id 7869  ax-rnegex 7870  ax-precex 7871  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-apti 7876  ax-pre-ltadd 7877  ax-pre-mulgt0 7878  ax-pre-mulext 7879  ax-arch 7880
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-xor 1371  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-frec 6367  df-1o 6392  df-er 6509  df-en 6715  df-dju 7011  df-inl 7020  df-inr 7021  df-case 7057  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-reap 8481  df-ap 8488  df-div 8577  df-inn 8866  df-2 8924  df-n0 9123  df-z 9200  df-uz 9475  df-q 9566  df-rp 9598  df-fz 9953  df-fl 10213  df-mod 10266  df-seqfrec 10389  df-exp 10463  df-dvds 11737
This theorem is referenced by:  omiunct  12386
  Copyright terms: Public domain W3C validator