ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctiunctal Unicode version

Theorem ctiunctal 13007
Description: Variation of ctiunct 13006 which allows  x to be present in  ph. (Contributed by Jim Kingdon, 5-May-2024.)
Hypotheses
Ref Expression
ctiunctal.a  |-  ( ph  ->  F : om -onto-> ( A 1o ) )
ctiunctal.b  |-  ( ph  ->  A. x  e.  A  G : om -onto-> ( B 1o ) )
Assertion
Ref Expression
ctiunctal  |-  ( ph  ->  E. h  h : om -onto-> ( U_ x  e.  A  B 1o ) )
Distinct variable groups:    A, h, x    B, h    x, F
Allowed substitution hints:    ph( x, h)    B( x)    F( h)    G( x, h)

Proof of Theorem ctiunctal
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ctiunctal.a . . 3  |-  ( ph  ->  F : om -onto-> ( A 1o ) )
2 ctiunctal.b . . . . 5  |-  ( ph  ->  A. x  e.  A  G : om -onto-> ( B 1o ) )
3 nfv 1574 . . . . . 6  |-  F/ y  G : om -onto-> ( B 1o )
4 nfcsb1v 3157 . . . . . . 7  |-  F/_ x [_ y  /  x ]_ G
5 nfcv 2372 . . . . . . 7  |-  F/_ x om
6 nfcsb1v 3157 . . . . . . . 8  |-  F/_ x [_ y  /  x ]_ B
7 nfcv 2372 . . . . . . . 8  |-  F/_ x 1o
86, 7nfdju 7205 . . . . . . 7  |-  F/_ x
( [_ y  /  x ]_ B 1o )
94, 5, 8nffo 5546 . . . . . 6  |-  F/ x [_ y  /  x ]_ G : om -onto-> ( [_ y  /  x ]_ B 1o )
10 csbeq1a 3133 . . . . . . 7  |-  ( x  =  y  ->  G  =  [_ y  /  x ]_ G )
11 eqidd 2230 . . . . . . 7  |-  ( x  =  y  ->  om  =  om )
12 csbeq1a 3133 . . . . . . . 8  |-  ( x  =  y  ->  B  =  [_ y  /  x ]_ B )
13 djueq1 7203 . . . . . . . 8  |-  ( B  =  [_ y  /  x ]_ B  ->  ( B 1o )  =  (
[_ y  /  x ]_ B 1o ) )
1412, 13syl 14 . . . . . . 7  |-  ( x  =  y  ->  ( B 1o )  =  (
[_ y  /  x ]_ B 1o ) )
1510, 11, 14foeq123d 5564 . . . . . 6  |-  ( x  =  y  ->  ( G : om -onto-> ( B 1o )  <->  [_ y  /  x ]_ G : om -onto-> ( [_ y  /  x ]_ B 1o ) ) )
163, 9, 15cbvral 2761 . . . . 5  |-  ( A. x  e.  A  G : om -onto-> ( B 1o )  <->  A. y  e.  A  [_ y  /  x ]_ G : om -onto-> ( [_ y  /  x ]_ B 1o ) )
172, 16sylib 122 . . . 4  |-  ( ph  ->  A. y  e.  A  [_ y  /  x ]_ G : om -onto-> ( [_ y  /  x ]_ B 1o ) )
1817r19.21bi 2618 . . 3  |-  ( (
ph  /\  y  e.  A )  ->  [_ y  /  x ]_ G : om -onto-> ( [_ y  /  x ]_ B 1o ) )
191, 18ctiunct 13006 . 2  |-  ( ph  ->  E. h  h : om -onto-> ( U_ y  e.  A  [_ y  /  x ]_ B 1o )
)
20 nfcv 2372 . . . . 5  |-  F/_ y B
2120, 6, 12cbviun 4001 . . . 4  |-  U_ x  e.  A  B  =  U_ y  e.  A  [_ y  /  x ]_ B
22 djueq1 7203 . . . 4  |-  ( U_ x  e.  A  B  =  U_ y  e.  A  [_ y  /  x ]_ B  ->  ( U_ x  e.  A  B 1o )  =  ( U_ y  e.  A  [_ y  /  x ]_ B 1o )
)
23 foeq3 5545 . . . 4  |-  ( (
U_ x  e.  A  B 1o )  =  (
U_ y  e.  A  [_ y  /  x ]_ B 1o )  ->  (
h : om -onto-> ( U_ x  e.  A  B 1o )  <->  h : om -onto-> ( U_ y  e.  A  [_ y  /  x ]_ B 1o )
) )
2421, 22, 23mp2b 8 . . 3  |-  ( h : om -onto-> ( U_ x  e.  A  B 1o )  <->  h : om -onto->
( U_ y  e.  A  [_ y  /  x ]_ B 1o ) )
2524exbii 1651 . 2  |-  ( E. h  h : om -onto->
( U_ x  e.  A  B 1o )  <->  E. h  h : om -onto-> ( U_ y  e.  A  [_ y  /  x ]_ B 1o ) )
2619, 25sylibr 134 1  |-  ( ph  ->  E. h  h : om -onto-> ( U_ x  e.  A  B 1o ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395   E.wex 1538   A.wral 2508   [_csb 3124   U_ciun 3964   omcom 4681   -onto->wfo 5315   1oc1o 6553   ⊔ cdju 7200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-xor 1418  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-1o 6560  df-er 6678  df-en 6886  df-dju 7201  df-inl 7210  df-inr 7211  df-case 7247  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fl 10485  df-mod 10540  df-seqfrec 10665  df-exp 10756  df-dvds 12294
This theorem is referenced by:  omiunct  13010
  Copyright terms: Public domain W3C validator