ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfxp Unicode version

Theorem nfxp 4566
Description: Bound-variable hypothesis builder for cross product. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nfxp.1  |-  F/_ x A
nfxp.2  |-  F/_ x B
Assertion
Ref Expression
nfxp  |-  F/_ x
( A  X.  B
)

Proof of Theorem nfxp
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-xp 4545 . 2  |-  ( A  X.  B )  =  { <. y ,  z
>.  |  ( y  e.  A  /\  z  e.  B ) }
2 nfxp.1 . . . . 5  |-  F/_ x A
32nfcri 2275 . . . 4  |-  F/ x  y  e.  A
4 nfxp.2 . . . . 5  |-  F/_ x B
54nfcri 2275 . . . 4  |-  F/ x  z  e.  B
63, 5nfan 1544 . . 3  |-  F/ x
( y  e.  A  /\  z  e.  B
)
76nfopab 3996 . 2  |-  F/_ x { <. y ,  z
>.  |  ( y  e.  A  /\  z  e.  B ) }
81, 7nfcxfr 2278 1  |-  F/_ x
( A  X.  B
)
Colors of variables: wff set class
Syntax hints:    /\ wa 103    e. wcel 1480   F/_wnfc 2268   {copab 3988    X. cxp 4537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-opab 3990  df-xp 4545
This theorem is referenced by:  opeliunxp  4594  nfres  4821  mpomptsx  6095  dmmpossx  6097  fmpox  6098  disjxp1  6133  nfdju  6927  fsum2dlemstep  11203  fisumcom2  11207
  Copyright terms: Public domain W3C validator