Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfxp | Unicode version |
Description: Bound-variable hypothesis builder for cross product. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfxp.1 | |
nfxp.2 |
Ref | Expression |
---|---|
nfxp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xp 4610 | . 2 | |
2 | nfxp.1 | . . . . 5 | |
3 | 2 | nfcri 2302 | . . . 4 |
4 | nfxp.2 | . . . . 5 | |
5 | 4 | nfcri 2302 | . . . 4 |
6 | 3, 5 | nfan 1553 | . . 3 |
7 | 6 | nfopab 4050 | . 2 |
8 | 1, 7 | nfcxfr 2305 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wcel 2136 wnfc 2295 copab 4042 cxp 4602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-opab 4044 df-xp 4610 |
This theorem is referenced by: opeliunxp 4659 nfres 4886 mpomptsx 6165 dmmpossx 6167 fmpox 6168 disjxp1 6204 nfdju 7007 fsum2dlemstep 11375 fisumcom2 11379 fprod2dlemstep 11563 fprodcom2fi 11567 |
Copyright terms: Public domain | W3C validator |