![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfxp | Unicode version |
Description: Bound-variable hypothesis builder for cross product. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfxp.1 |
![]() ![]() ![]() ![]() |
nfxp.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfxp |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xp 4647 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | nfxp.1 |
. . . . 5
![]() ![]() ![]() ![]() | |
3 | 2 | nfcri 2326 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
4 | nfxp.2 |
. . . . 5
![]() ![]() ![]() ![]() | |
5 | 4 | nfcri 2326 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
6 | 3, 5 | nfan 1576 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 6 | nfopab 4086 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 1, 7 | nfcxfr 2329 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-opab 4080 df-xp 4647 |
This theorem is referenced by: opeliunxp 4696 nfres 4924 mpomptsx 6217 dmmpossx 6219 fmpox 6220 disjxp1 6256 nfdju 7066 fsum2dlemstep 11469 fisumcom2 11473 fprod2dlemstep 11657 fprodcom2fi 11661 |
Copyright terms: Public domain | W3C validator |