ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfxp Unicode version

Theorem nfxp 4638
Description: Bound-variable hypothesis builder for cross product. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nfxp.1  |-  F/_ x A
nfxp.2  |-  F/_ x B
Assertion
Ref Expression
nfxp  |-  F/_ x
( A  X.  B
)

Proof of Theorem nfxp
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-xp 4617 . 2  |-  ( A  X.  B )  =  { <. y ,  z
>.  |  ( y  e.  A  /\  z  e.  B ) }
2 nfxp.1 . . . . 5  |-  F/_ x A
32nfcri 2306 . . . 4  |-  F/ x  y  e.  A
4 nfxp.2 . . . . 5  |-  F/_ x B
54nfcri 2306 . . . 4  |-  F/ x  z  e.  B
63, 5nfan 1558 . . 3  |-  F/ x
( y  e.  A  /\  z  e.  B
)
76nfopab 4057 . 2  |-  F/_ x { <. y ,  z
>.  |  ( y  e.  A  /\  z  e.  B ) }
81, 7nfcxfr 2309 1  |-  F/_ x
( A  X.  B
)
Colors of variables: wff set class
Syntax hints:    /\ wa 103    e. wcel 2141   F/_wnfc 2299   {copab 4049    X. cxp 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-opab 4051  df-xp 4617
This theorem is referenced by:  opeliunxp  4666  nfres  4893  mpomptsx  6176  dmmpossx  6178  fmpox  6179  disjxp1  6215  nfdju  7019  fsum2dlemstep  11397  fisumcom2  11401  fprod2dlemstep  11585  fprodcom2fi  11589
  Copyright terms: Public domain W3C validator