Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfxp | Unicode version |
Description: Bound-variable hypothesis builder for cross product. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfxp.1 | |
nfxp.2 |
Ref | Expression |
---|---|
nfxp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xp 4617 | . 2 | |
2 | nfxp.1 | . . . . 5 | |
3 | 2 | nfcri 2306 | . . . 4 |
4 | nfxp.2 | . . . . 5 | |
5 | 4 | nfcri 2306 | . . . 4 |
6 | 3, 5 | nfan 1558 | . . 3 |
7 | 6 | nfopab 4057 | . 2 |
8 | 1, 7 | nfcxfr 2309 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wcel 2141 wnfc 2299 copab 4049 cxp 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-opab 4051 df-xp 4617 |
This theorem is referenced by: opeliunxp 4666 nfres 4893 mpomptsx 6176 dmmpossx 6178 fmpox 6179 disjxp1 6215 nfdju 7019 fsum2dlemstep 11397 fisumcom2 11401 fprod2dlemstep 11585 fprodcom2fi 11589 |
Copyright terms: Public domain | W3C validator |