Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eusv2nf | Unicode version |
Description: Two ways to express single-valuedness of a class expression . (Contributed by Mario Carneiro, 18-Nov-2016.) |
Ref | Expression |
---|---|
eusv2.1 |
Ref | Expression |
---|---|
eusv2nf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeu1 2030 | . . . 4 | |
2 | nfe1 1489 | . . . . . . 7 | |
3 | 2 | nfeu 2038 | . . . . . 6 |
4 | eusv2.1 | . . . . . . . . 9 | |
5 | 4 | isseti 2738 | . . . . . . . 8 |
6 | 19.8a 1583 | . . . . . . . . 9 | |
7 | 6 | ancri 322 | . . . . . . . 8 |
8 | 5, 7 | eximii 1595 | . . . . . . 7 |
9 | eupick 2098 | . . . . . . 7 | |
10 | 8, 9 | mpan2 423 | . . . . . 6 |
11 | 3, 10 | alrimi 1515 | . . . . 5 |
12 | nf3 1662 | . . . . 5 | |
13 | 11, 12 | sylibr 133 | . . . 4 |
14 | 1, 13 | alrimi 1515 | . . 3 |
15 | dfnfc2 3814 | . . . 4 | |
16 | 15, 4 | mpg 1444 | . . 3 |
17 | 14, 16 | sylibr 133 | . 2 |
18 | eusvnfb 4439 | . . . 4 | |
19 | 4, 18 | mpbiran2 936 | . . 3 |
20 | eusv2i 4440 | . . 3 | |
21 | 19, 20 | sylbir 134 | . 2 |
22 | 17, 21 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1346 wceq 1348 wnf 1453 wex 1485 weu 2019 wcel 2141 wnfc 2299 cvv 2730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-sn 3589 df-pr 3590 df-uni 3797 |
This theorem is referenced by: eusv2 4442 |
Copyright terms: Public domain | W3C validator |