| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eusv2nf | Unicode version | ||
| Description: Two ways to express
single-valuedness of a class expression
|
| Ref | Expression |
|---|---|
| eusv2.1 |
|
| Ref | Expression |
|---|---|
| eusv2nf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeu1 2065 |
. . . 4
| |
| 2 | nfe1 1519 |
. . . . . . 7
| |
| 3 | 2 | nfeu 2073 |
. . . . . 6
|
| 4 | eusv2.1 |
. . . . . . . . 9
| |
| 5 | 4 | isseti 2780 |
. . . . . . . 8
|
| 6 | 19.8a 1613 |
. . . . . . . . 9
| |
| 7 | 6 | ancri 324 |
. . . . . . . 8
|
| 8 | 5, 7 | eximii 1625 |
. . . . . . 7
|
| 9 | eupick 2133 |
. . . . . . 7
| |
| 10 | 8, 9 | mpan2 425 |
. . . . . 6
|
| 11 | 3, 10 | alrimi 1545 |
. . . . 5
|
| 12 | nf3 1692 |
. . . . 5
| |
| 13 | 11, 12 | sylibr 134 |
. . . 4
|
| 14 | 1, 13 | alrimi 1545 |
. . 3
|
| 15 | dfnfc2 3868 |
. . . 4
| |
| 16 | 15, 4 | mpg 1474 |
. . 3
|
| 17 | 14, 16 | sylibr 134 |
. 2
|
| 18 | eusvnfb 4501 |
. . . 4
| |
| 19 | 4, 18 | mpbiran2 944 |
. . 3
|
| 20 | eusv2i 4502 |
. . 3
| |
| 21 | 19, 20 | sylbir 135 |
. 2
|
| 22 | 17, 21 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-sn 3639 df-pr 3640 df-uni 3851 |
| This theorem is referenced by: eusv2 4504 |
| Copyright terms: Public domain | W3C validator |