Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eusv2nf | Unicode version |
Description: Two ways to express single-valuedness of a class expression . (Contributed by Mario Carneiro, 18-Nov-2016.) |
Ref | Expression |
---|---|
eusv2.1 |
Ref | Expression |
---|---|
eusv2nf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeu1 2025 | . . . 4 | |
2 | nfe1 1484 | . . . . . . 7 | |
3 | 2 | nfeu 2033 | . . . . . 6 |
4 | eusv2.1 | . . . . . . . . 9 | |
5 | 4 | isseti 2734 | . . . . . . . 8 |
6 | 19.8a 1578 | . . . . . . . . 9 | |
7 | 6 | ancri 322 | . . . . . . . 8 |
8 | 5, 7 | eximii 1590 | . . . . . . 7 |
9 | eupick 2093 | . . . . . . 7 | |
10 | 8, 9 | mpan2 422 | . . . . . 6 |
11 | 3, 10 | alrimi 1510 | . . . . 5 |
12 | nf3 1657 | . . . . 5 | |
13 | 11, 12 | sylibr 133 | . . . 4 |
14 | 1, 13 | alrimi 1510 | . . 3 |
15 | dfnfc2 3807 | . . . 4 | |
16 | 15, 4 | mpg 1439 | . . 3 |
17 | 14, 16 | sylibr 133 | . 2 |
18 | eusvnfb 4432 | . . . 4 | |
19 | 4, 18 | mpbiran2 931 | . . 3 |
20 | eusv2i 4433 | . . 3 | |
21 | 19, 20 | sylbir 134 | . 2 |
22 | 17, 21 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wceq 1343 wnf 1448 wex 1480 weu 2014 wcel 2136 wnfc 2295 cvv 2726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-sn 3582 df-pr 3583 df-uni 3790 |
This theorem is referenced by: eusv2 4435 |
Copyright terms: Public domain | W3C validator |