ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eusv2nf Unicode version

Theorem eusv2nf 4491
Description: Two ways to express single-valuedness of a class expression  A ( x ). (Contributed by Mario Carneiro, 18-Nov-2016.)
Hypothesis
Ref Expression
eusv2.1  |-  A  e. 
_V
Assertion
Ref Expression
eusv2nf  |-  ( E! y E. x  y  =  A  <->  F/_ x A )
Distinct variable groups:    x, y    y, A
Allowed substitution hint:    A( x)

Proof of Theorem eusv2nf
StepHypRef Expression
1 nfeu1 2056 . . . 4  |-  F/ y E! y E. x  y  =  A
2 nfe1 1510 . . . . . . 7  |-  F/ x E. x  y  =  A
32nfeu 2064 . . . . . 6  |-  F/ x E! y E. x  y  =  A
4 eusv2.1 . . . . . . . . 9  |-  A  e. 
_V
54isseti 2771 . . . . . . . 8  |-  E. y 
y  =  A
6 19.8a 1604 . . . . . . . . 9  |-  ( y  =  A  ->  E. x  y  =  A )
76ancri 324 . . . . . . . 8  |-  ( y  =  A  ->  ( E. x  y  =  A  /\  y  =  A ) )
85, 7eximii 1616 . . . . . . 7  |-  E. y
( E. x  y  =  A  /\  y  =  A )
9 eupick 2124 . . . . . . 7  |-  ( ( E! y E. x  y  =  A  /\  E. y ( E. x  y  =  A  /\  y  =  A )
)  ->  ( E. x  y  =  A  ->  y  =  A ) )
108, 9mpan2 425 . . . . . 6  |-  ( E! y E. x  y  =  A  ->  ( E. x  y  =  A  ->  y  =  A ) )
113, 10alrimi 1536 . . . . 5  |-  ( E! y E. x  y  =  A  ->  A. x
( E. x  y  =  A  ->  y  =  A ) )
12 nf3 1683 . . . . 5  |-  ( F/ x  y  =  A  <->  A. x ( E. x  y  =  A  ->  y  =  A ) )
1311, 12sylibr 134 . . . 4  |-  ( E! y E. x  y  =  A  ->  F/ x  y  =  A
)
141, 13alrimi 1536 . . 3  |-  ( E! y E. x  y  =  A  ->  A. y F/ x  y  =  A )
15 dfnfc2 3857 . . . 4  |-  ( A. x  A  e.  _V  ->  ( F/_ x A  <->  A. y F/ x  y  =  A ) )
1615, 4mpg 1465 . . 3  |-  ( F/_ x A  <->  A. y F/ x  y  =  A )
1714, 16sylibr 134 . 2  |-  ( E! y E. x  y  =  A  ->  F/_ x A )
18 eusvnfb 4489 . . . 4  |-  ( E! y A. x  y  =  A  <->  ( F/_ x A  /\  A  e. 
_V ) )
194, 18mpbiran2 943 . . 3  |-  ( E! y A. x  y  =  A  <->  F/_ x A )
20 eusv2i 4490 . . 3  |-  ( E! y A. x  y  =  A  ->  E! y E. x  y  =  A )
2119, 20sylbir 135 . 2  |-  ( F/_ x A  ->  E! y E. x  y  =  A )
2217, 21impbii 126 1  |-  ( E! y E. x  y  =  A  <->  F/_ x A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1362    = wceq 1364   F/wnf 1474   E.wex 1506   E!weu 2045    e. wcel 2167   F/_wnfc 2326   _Vcvv 2763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-sn 3628  df-pr 3629  df-uni 3840
This theorem is referenced by:  eusv2  4492
  Copyright terms: Public domain W3C validator