ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifbieq12d Unicode version

Theorem ifbieq12d 3498
Description: Equivalence deduction for conditional operators. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
ifbieq12d.1  |-  ( ph  ->  ( ps  <->  ch )
)
ifbieq12d.2  |-  ( ph  ->  A  =  C )
ifbieq12d.3  |-  ( ph  ->  B  =  D )
Assertion
Ref Expression
ifbieq12d  |-  ( ph  ->  if ( ps ,  A ,  B )  =  if ( ch ,  C ,  D )
)

Proof of Theorem ifbieq12d
StepHypRef Expression
1 ifbieq12d.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
21ifbid 3493 . 2  |-  ( ph  ->  if ( ps ,  A ,  B )  =  if ( ch ,  A ,  B )
)
3 ifbieq12d.2 . . 3  |-  ( ph  ->  A  =  C )
4 ifbieq12d.3 . . 3  |-  ( ph  ->  B  =  D )
53, 4ifeq12d 3491 . 2  |-  ( ph  ->  if ( ch ,  A ,  B )  =  if ( ch ,  C ,  D )
)
62, 5eqtrd 2172 1  |-  ( ph  ->  if ( ps ,  A ,  B )  =  if ( ch ,  C ,  D )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1331   ifcif 3474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-rab 2425  df-v 2688  df-un 3075  df-if 3475
This theorem is referenced by:  updjudhcoinlf  6965  updjudhcoinrg  6966  omp1eom  6980  xaddval  9640  iseqf1olemqval  10272  iseqf1olemqk  10279  seq3f1olemqsum  10285  exp3val  10307  cvgratz  11313  eucalgval2  11745  ennnfonelemg  11927  ennnfonelem1  11931  ressid2  12032  ressval2  12033
  Copyright terms: Public domain W3C validator