| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifbieq12d | Unicode version | ||
| Description: Equivalence deduction for conditional operators. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| ifbieq12d.1 |
|
| ifbieq12d.2 |
|
| ifbieq12d.3 |
|
| Ref | Expression |
|---|---|
| ifbieq12d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbieq12d.1 |
. . 3
| |
| 2 | 1 | ifbid 3601 |
. 2
|
| 3 | ifbieq12d.2 |
. . 3
| |
| 4 | ifbieq12d.3 |
. . 3
| |
| 5 | 3, 4 | ifeq12d 3599 |
. 2
|
| 6 | 2, 5 | eqtrd 2240 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rab 2495 df-v 2778 df-un 3178 df-if 3580 |
| This theorem is referenced by: updjudhcoinlf 7208 updjudhcoinrg 7209 omp1eom 7223 xaddval 10002 iseqf1olemqval 10682 iseqf1olemqk 10689 seq3f1olemqsum 10695 seqf1oglem2 10702 exp3val 10723 ccatfvalfi 11086 ccatval1 11091 ccatval2 11092 cvgratz 11958 eucalgval2 12490 ennnfonelemg 12889 ennnfonelem1 12893 mulgval 13573 lgsval 15596 gausslemma2dlem1a 15650 gausslemma2dlem1f1o 15652 gausslemma2dlem2 15654 gausslemma2dlem3 15655 gausslemma2dlem4 15656 vtxvalg 15730 iedgvalg 15731 |
| Copyright terms: Public domain | W3C validator |