Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ifbieq12d | Unicode version |
Description: Equivalence deduction for conditional operators. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
ifbieq12d.1 | |
ifbieq12d.2 | |
ifbieq12d.3 |
Ref | Expression |
---|---|
ifbieq12d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifbieq12d.1 | . . 3 | |
2 | 1 | ifbid 3541 | . 2 |
3 | ifbieq12d.2 | . . 3 | |
4 | ifbieq12d.3 | . . 3 | |
5 | 3, 4 | ifeq12d 3539 | . 2 |
6 | 2, 5 | eqtrd 2198 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1343 cif 3520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rab 2453 df-v 2728 df-un 3120 df-if 3521 |
This theorem is referenced by: updjudhcoinlf 7045 updjudhcoinrg 7046 omp1eom 7060 xaddval 9781 iseqf1olemqval 10422 iseqf1olemqk 10429 seq3f1olemqsum 10435 exp3val 10457 cvgratz 11473 eucalgval2 11985 ennnfonelemg 12336 ennnfonelem1 12340 ressid2 12454 ressval2 12455 lgsval 13545 |
Copyright terms: Public domain | W3C validator |