ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifbieq12d Unicode version

Theorem ifbieq12d 3597
Description: Equivalence deduction for conditional operators. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
ifbieq12d.1  |-  ( ph  ->  ( ps  <->  ch )
)
ifbieq12d.2  |-  ( ph  ->  A  =  C )
ifbieq12d.3  |-  ( ph  ->  B  =  D )
Assertion
Ref Expression
ifbieq12d  |-  ( ph  ->  if ( ps ,  A ,  B )  =  if ( ch ,  C ,  D )
)

Proof of Theorem ifbieq12d
StepHypRef Expression
1 ifbieq12d.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
21ifbid 3592 . 2  |-  ( ph  ->  if ( ps ,  A ,  B )  =  if ( ch ,  A ,  B )
)
3 ifbieq12d.2 . . 3  |-  ( ph  ->  A  =  C )
4 ifbieq12d.3 . . 3  |-  ( ph  ->  B  =  D )
53, 4ifeq12d 3590 . 2  |-  ( ph  ->  if ( ch ,  A ,  B )  =  if ( ch ,  C ,  D )
)
62, 5eqtrd 2238 1  |-  ( ph  ->  if ( ps ,  A ,  B )  =  if ( ch ,  C ,  D )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373   ifcif 3571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rab 2493  df-v 2774  df-un 3170  df-if 3572
This theorem is referenced by:  updjudhcoinlf  7182  updjudhcoinrg  7183  omp1eom  7197  xaddval  9967  iseqf1olemqval  10645  iseqf1olemqk  10652  seq3f1olemqsum  10658  seqf1oglem2  10665  exp3val  10686  ccatfvalfi  11048  ccatval1  11053  ccatval2  11054  cvgratz  11843  eucalgval2  12375  ennnfonelemg  12774  ennnfonelem1  12778  mulgval  13458  lgsval  15481  gausslemma2dlem1a  15535  gausslemma2dlem1f1o  15537  gausslemma2dlem2  15539  gausslemma2dlem3  15540  gausslemma2dlem4  15541  vtxvalg  15615  iedgvalg  15616
  Copyright terms: Public domain W3C validator