| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifbieq12d | Unicode version | ||
| Description: Equivalence deduction for conditional operators. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| ifbieq12d.1 |
|
| ifbieq12d.2 |
|
| ifbieq12d.3 |
|
| Ref | Expression |
|---|---|
| ifbieq12d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbieq12d.1 |
. . 3
| |
| 2 | 1 | ifbid 3592 |
. 2
|
| 3 | ifbieq12d.2 |
. . 3
| |
| 4 | ifbieq12d.3 |
. . 3
| |
| 5 | 3, 4 | ifeq12d 3590 |
. 2
|
| 6 | 2, 5 | eqtrd 2238 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rab 2493 df-v 2774 df-un 3170 df-if 3572 |
| This theorem is referenced by: updjudhcoinlf 7182 updjudhcoinrg 7183 omp1eom 7197 xaddval 9967 iseqf1olemqval 10645 iseqf1olemqk 10652 seq3f1olemqsum 10658 seqf1oglem2 10665 exp3val 10686 ccatfvalfi 11048 ccatval1 11053 ccatval2 11054 cvgratz 11843 eucalgval2 12375 ennnfonelemg 12774 ennnfonelem1 12778 mulgval 13458 lgsval 15481 gausslemma2dlem1a 15535 gausslemma2dlem1f1o 15537 gausslemma2dlem2 15539 gausslemma2dlem3 15540 gausslemma2dlem4 15541 vtxvalg 15615 iedgvalg 15616 |
| Copyright terms: Public domain | W3C validator |