| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifbieq12d | Unicode version | ||
| Description: Equivalence deduction for conditional operators. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| ifbieq12d.1 |
|
| ifbieq12d.2 |
|
| ifbieq12d.3 |
|
| Ref | Expression |
|---|---|
| ifbieq12d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbieq12d.1 |
. . 3
| |
| 2 | 1 | ifbid 3624 |
. 2
|
| 3 | ifbieq12d.2 |
. . 3
| |
| 4 | ifbieq12d.3 |
. . 3
| |
| 5 | 3, 4 | ifeq12d 3622 |
. 2
|
| 6 | 2, 5 | eqtrd 2262 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-v 2801 df-un 3201 df-if 3603 |
| This theorem is referenced by: updjudhcoinlf 7243 updjudhcoinrg 7244 omp1eom 7258 xaddval 10037 iseqf1olemqval 10717 iseqf1olemqk 10724 seq3f1olemqsum 10730 seqf1oglem2 10737 exp3val 10758 ccatfvalfi 11122 ccatval1 11127 ccatval2 11128 cvgratz 12038 eucalgval2 12570 ennnfonelemg 12969 ennnfonelem1 12973 mulgval 13654 lgsval 15677 gausslemma2dlem1a 15731 gausslemma2dlem1f1o 15733 gausslemma2dlem2 15735 gausslemma2dlem3 15736 gausslemma2dlem4 15737 vtxvalg 15811 iedgvalg 15812 |
| Copyright terms: Public domain | W3C validator |