| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifbieq12d | Unicode version | ||
| Description: Equivalence deduction for conditional operators. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| ifbieq12d.1 |
|
| ifbieq12d.2 |
|
| ifbieq12d.3 |
|
| Ref | Expression |
|---|---|
| ifbieq12d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbieq12d.1 |
. . 3
| |
| 2 | 1 | ifbid 3591 |
. 2
|
| 3 | ifbieq12d.2 |
. . 3
| |
| 4 | ifbieq12d.3 |
. . 3
| |
| 5 | 3, 4 | ifeq12d 3589 |
. 2
|
| 6 | 2, 5 | eqtrd 2237 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rab 2492 df-v 2773 df-un 3169 df-if 3571 |
| This theorem is referenced by: updjudhcoinlf 7181 updjudhcoinrg 7182 omp1eom 7196 xaddval 9966 iseqf1olemqval 10643 iseqf1olemqk 10650 seq3f1olemqsum 10656 seqf1oglem2 10663 exp3val 10684 ccatfvalfi 11046 ccatval1 11051 ccatval2 11052 cvgratz 11814 eucalgval2 12346 ennnfonelemg 12745 ennnfonelem1 12749 mulgval 13429 lgsval 15452 gausslemma2dlem1a 15506 gausslemma2dlem1f1o 15508 gausslemma2dlem2 15510 gausslemma2dlem3 15511 gausslemma2dlem4 15512 vtxvalg 15586 iedgvalg 15587 |
| Copyright terms: Public domain | W3C validator |