ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifbieq12d Unicode version

Theorem ifbieq12d 3596
Description: Equivalence deduction for conditional operators. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
ifbieq12d.1  |-  ( ph  ->  ( ps  <->  ch )
)
ifbieq12d.2  |-  ( ph  ->  A  =  C )
ifbieq12d.3  |-  ( ph  ->  B  =  D )
Assertion
Ref Expression
ifbieq12d  |-  ( ph  ->  if ( ps ,  A ,  B )  =  if ( ch ,  C ,  D )
)

Proof of Theorem ifbieq12d
StepHypRef Expression
1 ifbieq12d.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
21ifbid 3591 . 2  |-  ( ph  ->  if ( ps ,  A ,  B )  =  if ( ch ,  A ,  B )
)
3 ifbieq12d.2 . . 3  |-  ( ph  ->  A  =  C )
4 ifbieq12d.3 . . 3  |-  ( ph  ->  B  =  D )
53, 4ifeq12d 3589 . 2  |-  ( ph  ->  if ( ch ,  A ,  B )  =  if ( ch ,  C ,  D )
)
62, 5eqtrd 2237 1  |-  ( ph  ->  if ( ps ,  A ,  B )  =  if ( ch ,  C ,  D )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1372   ifcif 3570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rab 2492  df-v 2773  df-un 3169  df-if 3571
This theorem is referenced by:  updjudhcoinlf  7181  updjudhcoinrg  7182  omp1eom  7196  xaddval  9966  iseqf1olemqval  10643  iseqf1olemqk  10650  seq3f1olemqsum  10656  seqf1oglem2  10663  exp3val  10684  ccatfvalfi  11046  ccatval1  11051  ccatval2  11052  cvgratz  11814  eucalgval2  12346  ennnfonelemg  12745  ennnfonelem1  12749  mulgval  13429  lgsval  15452  gausslemma2dlem1a  15506  gausslemma2dlem1f1o  15508  gausslemma2dlem2  15510  gausslemma2dlem3  15511  gausslemma2dlem4  15512  vtxvalg  15586  iedgvalg  15587
  Copyright terms: Public domain W3C validator