| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfif | Unicode version | ||
| Description: Bound-variable hypothesis builder for a conditional operator. (Contributed by NM, 16-Feb-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| nfif.1 |
|
| nfif.2 |
|
| nfif.3 |
|
| Ref | Expression |
|---|---|
| nfif |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfif.1 |
. . . 4
| |
| 2 | 1 | a1i 9 |
. . 3
|
| 3 | nfif.2 |
. . . 4
| |
| 4 | 3 | a1i 9 |
. . 3
|
| 5 | nfif.3 |
. . . 4
| |
| 6 | 5 | a1i 9 |
. . 3
|
| 7 | 2, 4, 6 | nfifd 3630 |
. 2
|
| 8 | 7 | mptru 1404 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-if 3603 |
| This theorem is referenced by: nfsum1 11867 nfsum 11868 sumrbdclem 11888 summodclem2a 11892 zsumdc 11895 fsum3 11898 isumss 11902 isumss2 11904 fsum3cvg2 11905 nfcprod1 12065 nfcprod 12066 cbvprod 12069 prodrbdclem 12082 prodmodclem2a 12087 zproddc 12090 fprodseq 12094 fprodntrivap 12095 prodssdc 12100 pcmpt 12866 pcmptdvds 12868 |
| Copyright terms: Public domain | W3C validator |