| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nfif | Unicode version | ||
| Description: Bound-variable hypothesis builder for a conditional operator. (Contributed by NM, 16-Feb-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| nfif.1 | 
 | 
| nfif.2 | 
 | 
| nfif.3 | 
 | 
| Ref | Expression | 
|---|---|
| nfif | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfif.1 | 
. . . 4
 | |
| 2 | 1 | a1i 9 | 
. . 3
 | 
| 3 | nfif.2 | 
. . . 4
 | |
| 4 | 3 | a1i 9 | 
. . 3
 | 
| 5 | nfif.3 | 
. . . 4
 | |
| 6 | 5 | a1i 9 | 
. . 3
 | 
| 7 | 2, 4, 6 | nfifd 3588 | 
. 2
 | 
| 8 | 7 | mptru 1373 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-if 3562 | 
| This theorem is referenced by: nfsum1 11521 nfsum 11522 sumrbdclem 11542 summodclem2a 11546 zsumdc 11549 fsum3 11552 isumss 11556 isumss2 11558 fsum3cvg2 11559 nfcprod1 11719 nfcprod 11720 cbvprod 11723 prodrbdclem 11736 prodmodclem2a 11741 zproddc 11744 fprodseq 11748 fprodntrivap 11749 prodssdc 11754 pcmpt 12512 pcmptdvds 12514 | 
| Copyright terms: Public domain | W3C validator |