![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfif | Unicode version |
Description: Bound-variable hypothesis builder for a conditional operator. (Contributed by NM, 16-Feb-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
nfif.1 |
![]() ![]() ![]() ![]() |
nfif.2 |
![]() ![]() ![]() ![]() |
nfif.3 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfif |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfif.1 |
. . . 4
![]() ![]() ![]() ![]() | |
2 | 1 | a1i 9 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | nfif.2 |
. . . 4
![]() ![]() ![]() ![]() | |
4 | 3 | a1i 9 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | nfif.3 |
. . . 4
![]() ![]() ![]() ![]() | |
6 | 5 | a1i 9 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 2, 4, 6 | nfifd 3562 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 7 | mptru 1362 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-if 3536 |
This theorem is referenced by: nfsum1 11364 nfsum 11365 sumrbdclem 11385 summodclem2a 11389 zsumdc 11392 fsum3 11395 isumss 11399 isumss2 11401 fsum3cvg2 11402 nfcprod1 11562 nfcprod 11563 cbvprod 11566 prodrbdclem 11579 prodmodclem2a 11584 zproddc 11587 fprodseq 11591 fprodntrivap 11592 prodssdc 11597 pcmpt 12341 pcmptdvds 12343 |
Copyright terms: Public domain | W3C validator |