![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfif | Unicode version |
Description: Bound-variable hypothesis builder for a conditional operator. (Contributed by NM, 16-Feb-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
nfif.1 |
![]() ![]() ![]() ![]() |
nfif.2 |
![]() ![]() ![]() ![]() |
nfif.3 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfif |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfif.1 |
. . . 4
![]() ![]() ![]() ![]() | |
2 | 1 | a1i 9 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | nfif.2 |
. . . 4
![]() ![]() ![]() ![]() | |
4 | 3 | a1i 9 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | nfif.3 |
. . . 4
![]() ![]() ![]() ![]() | |
6 | 5 | a1i 9 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 2, 4, 6 | nfifd 3585 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 7 | mptru 1373 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-if 3559 |
This theorem is referenced by: nfsum1 11502 nfsum 11503 sumrbdclem 11523 summodclem2a 11527 zsumdc 11530 fsum3 11533 isumss 11537 isumss2 11539 fsum3cvg2 11540 nfcprod1 11700 nfcprod 11701 cbvprod 11704 prodrbdclem 11717 prodmodclem2a 11722 zproddc 11725 fprodseq 11729 fprodntrivap 11730 prodssdc 11735 pcmpt 12484 pcmptdvds 12486 |
Copyright terms: Public domain | W3C validator |