| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfif | Unicode version | ||
| Description: Bound-variable hypothesis builder for a conditional operator. (Contributed by NM, 16-Feb-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| nfif.1 |
|
| nfif.2 |
|
| nfif.3 |
|
| Ref | Expression |
|---|---|
| nfif |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfif.1 |
. . . 4
| |
| 2 | 1 | a1i 9 |
. . 3
|
| 3 | nfif.2 |
. . . 4
| |
| 4 | 3 | a1i 9 |
. . 3
|
| 5 | nfif.3 |
. . . 4
| |
| 6 | 5 | a1i 9 |
. . 3
|
| 7 | 2, 4, 6 | nfifd 3589 |
. 2
|
| 8 | 7 | mptru 1373 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-if 3563 |
| This theorem is referenced by: nfsum1 11538 nfsum 11539 sumrbdclem 11559 summodclem2a 11563 zsumdc 11566 fsum3 11569 isumss 11573 isumss2 11575 fsum3cvg2 11576 nfcprod1 11736 nfcprod 11737 cbvprod 11740 prodrbdclem 11753 prodmodclem2a 11758 zproddc 11761 fprodseq 11765 fprodntrivap 11766 prodssdc 11771 pcmpt 12537 pcmptdvds 12539 |
| Copyright terms: Public domain | W3C validator |