| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfif | Unicode version | ||
| Description: Bound-variable hypothesis builder for a conditional operator. (Contributed by NM, 16-Feb-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| nfif.1 |
|
| nfif.2 |
|
| nfif.3 |
|
| Ref | Expression |
|---|---|
| nfif |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfif.1 |
. . . 4
| |
| 2 | 1 | a1i 9 |
. . 3
|
| 3 | nfif.2 |
. . . 4
| |
| 4 | 3 | a1i 9 |
. . 3
|
| 5 | nfif.3 |
. . . 4
| |
| 6 | 5 | a1i 9 |
. . 3
|
| 7 | 2, 4, 6 | nfifd 3598 |
. 2
|
| 8 | 7 | mptru 1382 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-if 3572 |
| This theorem is referenced by: nfsum1 11700 nfsum 11701 sumrbdclem 11721 summodclem2a 11725 zsumdc 11728 fsum3 11731 isumss 11735 isumss2 11737 fsum3cvg2 11738 nfcprod1 11898 nfcprod 11899 cbvprod 11902 prodrbdclem 11915 prodmodclem2a 11920 zproddc 11923 fprodseq 11927 fprodntrivap 11928 prodssdc 11933 pcmpt 12699 pcmptdvds 12701 |
| Copyright terms: Public domain | W3C validator |