Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfif | Unicode version |
Description: Bound-variable hypothesis builder for a conditional operator. (Contributed by NM, 16-Feb-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
nfif.1 | |
nfif.2 | |
nfif.3 |
Ref | Expression |
---|---|
nfif |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfif.1 | . . . 4 | |
2 | 1 | a1i 9 | . . 3 |
3 | nfif.2 | . . . 4 | |
4 | 3 | a1i 9 | . . 3 |
5 | nfif.3 | . . . 4 | |
6 | 5 | a1i 9 | . . 3 |
7 | 2, 4, 6 | nfifd 3553 | . 2 |
8 | 7 | mptru 1357 | 1 |
Colors of variables: wff set class |
Syntax hints: wtru 1349 wnf 1453 wnfc 2299 cif 3526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-if 3527 |
This theorem is referenced by: nfsum1 11319 nfsum 11320 sumrbdclem 11340 summodclem2a 11344 zsumdc 11347 fsum3 11350 isumss 11354 isumss2 11356 fsum3cvg2 11357 nfcprod1 11517 nfcprod 11518 cbvprod 11521 prodrbdclem 11534 prodmodclem2a 11539 zproddc 11542 fprodseq 11546 fprodntrivap 11547 prodssdc 11552 pcmpt 12295 pcmptdvds 12297 |
Copyright terms: Public domain | W3C validator |