ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfif Unicode version

Theorem nfif 3631
Description: Bound-variable hypothesis builder for a conditional operator. (Contributed by NM, 16-Feb-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Hypotheses
Ref Expression
nfif.1  |-  F/ x ph
nfif.2  |-  F/_ x A
nfif.3  |-  F/_ x B
Assertion
Ref Expression
nfif  |-  F/_ x if ( ph ,  A ,  B )

Proof of Theorem nfif
StepHypRef Expression
1 nfif.1 . . . 4  |-  F/ x ph
21a1i 9 . . 3  |-  ( T. 
->  F/ x ph )
3 nfif.2 . . . 4  |-  F/_ x A
43a1i 9 . . 3  |-  ( T. 
->  F/_ x A )
5 nfif.3 . . . 4  |-  F/_ x B
65a1i 9 . . 3  |-  ( T. 
->  F/_ x B )
72, 4, 6nfifd 3630 . 2  |-  ( T. 
->  F/_ x if (
ph ,  A ,  B ) )
87mptru 1404 1  |-  F/_ x if ( ph ,  A ,  B )
Colors of variables: wff set class
Syntax hints:   T. wtru 1396   F/wnf 1506   F/_wnfc 2359   ifcif 3602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-if 3603
This theorem is referenced by:  nfsum1  11867  nfsum  11868  sumrbdclem  11888  summodclem2a  11892  zsumdc  11895  fsum3  11898  isumss  11902  isumss2  11904  fsum3cvg2  11905  nfcprod1  12065  nfcprod  12066  cbvprod  12069  prodrbdclem  12082  prodmodclem2a  12087  zproddc  12090  fprodseq  12094  fprodntrivap  12095  prodssdc  12100  pcmpt  12866  pcmptdvds  12868
  Copyright terms: Public domain W3C validator