| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfif | Unicode version | ||
| Description: Bound-variable hypothesis builder for a conditional operator. (Contributed by NM, 16-Feb-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| nfif.1 |
|
| nfif.2 |
|
| nfif.3 |
|
| Ref | Expression |
|---|---|
| nfif |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfif.1 |
. . . 4
| |
| 2 | 1 | a1i 9 |
. . 3
|
| 3 | nfif.2 |
. . . 4
| |
| 4 | 3 | a1i 9 |
. . 3
|
| 5 | nfif.3 |
. . . 4
| |
| 6 | 5 | a1i 9 |
. . 3
|
| 7 | 2, 4, 6 | nfifd 3598 |
. 2
|
| 8 | 7 | mptru 1382 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-if 3572 |
| This theorem is referenced by: nfsum1 11667 nfsum 11668 sumrbdclem 11688 summodclem2a 11692 zsumdc 11695 fsum3 11698 isumss 11702 isumss2 11704 fsum3cvg2 11705 nfcprod1 11865 nfcprod 11866 cbvprod 11869 prodrbdclem 11882 prodmodclem2a 11887 zproddc 11890 fprodseq 11894 fprodntrivap 11895 prodssdc 11900 pcmpt 12666 pcmptdvds 12668 |
| Copyright terms: Public domain | W3C validator |