| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfif | Unicode version | ||
| Description: Bound-variable hypothesis builder for a conditional operator. (Contributed by NM, 16-Feb-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| nfif.1 |
|
| nfif.2 |
|
| nfif.3 |
|
| Ref | Expression |
|---|---|
| nfif |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfif.1 |
. . . 4
| |
| 2 | 1 | a1i 9 |
. . 3
|
| 3 | nfif.2 |
. . . 4
| |
| 4 | 3 | a1i 9 |
. . 3
|
| 5 | nfif.3 |
. . . 4
| |
| 6 | 5 | a1i 9 |
. . 3
|
| 7 | 2, 4, 6 | nfifd 3607 |
. 2
|
| 8 | 7 | mptru 1382 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-if 3580 |
| This theorem is referenced by: nfsum1 11782 nfsum 11783 sumrbdclem 11803 summodclem2a 11807 zsumdc 11810 fsum3 11813 isumss 11817 isumss2 11819 fsum3cvg2 11820 nfcprod1 11980 nfcprod 11981 cbvprod 11984 prodrbdclem 11997 prodmodclem2a 12002 zproddc 12005 fprodseq 12009 fprodntrivap 12010 prodssdc 12015 pcmpt 12781 pcmptdvds 12783 |
| Copyright terms: Public domain | W3C validator |