| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nfixpxy | Unicode version | ||
| Description: Bound-variable hypothesis builder for indexed Cartesian product. (Contributed by Mario Carneiro, 15-Oct-2016.) (Revised by Jim Kingdon, 15-Feb-2023.) | 
| Ref | Expression | 
|---|---|
| nfixp.1 | 
 | 
| nfixp.2 | 
 | 
| Ref | Expression | 
|---|---|
| nfixpxy | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-ixp 6758 | 
. 2
 | |
| 2 | nfcv 2339 | 
. . . . 5
 | |
| 3 | nftru 1480 | 
. . . . . . 7
 | |
| 4 | nfcvd 2340 | 
. . . . . . . 8
 | |
| 5 | nfixp.1 | 
. . . . . . . . 9
 | |
| 6 | 5 | a1i 9 | 
. . . . . . . 8
 | 
| 7 | 4, 6 | nfeld 2355 | 
. . . . . . 7
 | 
| 8 | 3, 7 | nfabd 2359 | 
. . . . . 6
 | 
| 9 | 8 | mptru 1373 | 
. . . . 5
 | 
| 10 | 2, 9 | nffn 5354 | 
. . . 4
 | 
| 11 | df-ral 2480 | 
. . . . 5
 | |
| 12 | 2 | a1i 9 | 
. . . . . . . . . 10
 | 
| 13 | 12, 4 | nffvd 5570 | 
. . . . . . . . 9
 | 
| 14 | nfixp.2 | 
. . . . . . . . . 10
 | |
| 15 | 14 | a1i 9 | 
. . . . . . . . 9
 | 
| 16 | 13, 15 | nfeld 2355 | 
. . . . . . . 8
 | 
| 17 | 7, 16 | nfimd 1599 | 
. . . . . . 7
 | 
| 18 | 3, 17 | nfald 1774 | 
. . . . . 6
 | 
| 19 | 18 | mptru 1373 | 
. . . . 5
 | 
| 20 | 11, 19 | nfxfr 1488 | 
. . . 4
 | 
| 21 | 10, 20 | nfan 1579 | 
. . 3
 | 
| 22 | 21 | nfab 2344 | 
. 2
 | 
| 23 | 1, 22 | nfcxfr 2336 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-ixp 6758 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |