Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfixpxy | Unicode version |
Description: Bound-variable hypothesis builder for indexed Cartesian product. (Contributed by Mario Carneiro, 15-Oct-2016.) (Revised by Jim Kingdon, 15-Feb-2023.) |
Ref | Expression |
---|---|
nfixp.1 | |
nfixp.2 |
Ref | Expression |
---|---|
nfixpxy |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ixp 6665 | . 2 | |
2 | nfcv 2308 | . . . . 5 | |
3 | nftru 1454 | . . . . . . 7 | |
4 | nfcvd 2309 | . . . . . . . 8 | |
5 | nfixp.1 | . . . . . . . . 9 | |
6 | 5 | a1i 9 | . . . . . . . 8 |
7 | 4, 6 | nfeld 2324 | . . . . . . 7 |
8 | 3, 7 | nfabd 2328 | . . . . . 6 |
9 | 8 | mptru 1352 | . . . . 5 |
10 | 2, 9 | nffn 5284 | . . . 4 |
11 | df-ral 2449 | . . . . 5 | |
12 | 2 | a1i 9 | . . . . . . . . . 10 |
13 | 12, 4 | nffvd 5498 | . . . . . . . . 9 |
14 | nfixp.2 | . . . . . . . . . 10 | |
15 | 14 | a1i 9 | . . . . . . . . 9 |
16 | 13, 15 | nfeld 2324 | . . . . . . . 8 |
17 | 7, 16 | nfimd 1573 | . . . . . . 7 |
18 | 3, 17 | nfald 1748 | . . . . . 6 |
19 | 18 | mptru 1352 | . . . . 5 |
20 | 11, 19 | nfxfr 1462 | . . . 4 |
21 | 10, 20 | nfan 1553 | . . 3 |
22 | 21 | nfab 2313 | . 2 |
23 | 1, 22 | nfcxfr 2305 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1341 wtru 1344 wnf 1448 wcel 2136 cab 2151 wnfc 2295 wral 2444 wfn 5183 cfv 5188 cixp 6664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 df-ixp 6665 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |