ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfixpxy Unicode version

Theorem nfixpxy 6827
Description: Bound-variable hypothesis builder for indexed Cartesian product. (Contributed by Mario Carneiro, 15-Oct-2016.) (Revised by Jim Kingdon, 15-Feb-2023.)
Hypotheses
Ref Expression
nfixp.1  |-  F/_ y A
nfixp.2  |-  F/_ y B
Assertion
Ref Expression
nfixpxy  |-  F/_ y X_ x  e.  A  B
Distinct variable group:    x, y
Allowed substitution hints:    A( x, y)    B( x, y)

Proof of Theorem nfixpxy
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-ixp 6809 . 2  |-  X_ x  e.  A  B  =  { z  |  ( z  Fn  { x  |  x  e.  A }  /\  A. x  e.  A  ( z `  x )  e.  B
) }
2 nfcv 2350 . . . . 5  |-  F/_ y
z
3 nftru 1490 . . . . . . 7  |-  F/ x T.
4 nfcvd 2351 . . . . . . . 8  |-  ( T. 
->  F/_ y x )
5 nfixp.1 . . . . . . . . 9  |-  F/_ y A
65a1i 9 . . . . . . . 8  |-  ( T. 
->  F/_ y A )
74, 6nfeld 2366 . . . . . . 7  |-  ( T. 
->  F/ y  x  e.  A )
83, 7nfabd 2370 . . . . . 6  |-  ( T. 
->  F/_ y { x  |  x  e.  A } )
98mptru 1382 . . . . 5  |-  F/_ y { x  |  x  e.  A }
102, 9nffn 5389 . . . 4  |-  F/ y  z  Fn  { x  |  x  e.  A }
11 df-ral 2491 . . . . 5  |-  ( A. x  e.  A  (
z `  x )  e.  B  <->  A. x ( x  e.  A  ->  (
z `  x )  e.  B ) )
122a1i 9 . . . . . . . . . 10  |-  ( T. 
->  F/_ y z )
1312, 4nffvd 5611 . . . . . . . . 9  |-  ( T. 
->  F/_ y ( z `
 x ) )
14 nfixp.2 . . . . . . . . . 10  |-  F/_ y B
1514a1i 9 . . . . . . . . 9  |-  ( T. 
->  F/_ y B )
1613, 15nfeld 2366 . . . . . . . 8  |-  ( T. 
->  F/ y ( z `
 x )  e.  B )
177, 16nfimd 1609 . . . . . . 7  |-  ( T. 
->  F/ y ( x  e.  A  ->  (
z `  x )  e.  B ) )
183, 17nfald 1784 . . . . . 6  |-  ( T. 
->  F/ y A. x
( x  e.  A  ->  ( z `  x
)  e.  B ) )
1918mptru 1382 . . . . 5  |-  F/ y A. x ( x  e.  A  ->  (
z `  x )  e.  B )
2011, 19nfxfr 1498 . . . 4  |-  F/ y A. x  e.  A  ( z `  x
)  e.  B
2110, 20nfan 1589 . . 3  |-  F/ y ( z  Fn  {
x  |  x  e.  A }  /\  A. x  e.  A  (
z `  x )  e.  B )
2221nfab 2355 . 2  |-  F/_ y { z  |  ( z  Fn  { x  |  x  e.  A }  /\  A. x  e.  A  ( z `  x )  e.  B
) }
231, 22nfcxfr 2347 1  |-  F/_ y X_ x  e.  A  B
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1371   T. wtru 1374   F/wnf 1484    e. wcel 2178   {cab 2193   F/_wnfc 2337   A.wral 2486    Fn wfn 5285   ` cfv 5290   X_cixp 6808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-ixp 6809
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator