ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfixpxy Unicode version

Theorem nfixpxy 6707
Description: Bound-variable hypothesis builder for indexed Cartesian product. (Contributed by Mario Carneiro, 15-Oct-2016.) (Revised by Jim Kingdon, 15-Feb-2023.)
Hypotheses
Ref Expression
nfixp.1  |-  F/_ y A
nfixp.2  |-  F/_ y B
Assertion
Ref Expression
nfixpxy  |-  F/_ y X_ x  e.  A  B
Distinct variable group:    x, y
Allowed substitution hints:    A( x, y)    B( x, y)

Proof of Theorem nfixpxy
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-ixp 6689 . 2  |-  X_ x  e.  A  B  =  { z  |  ( z  Fn  { x  |  x  e.  A }  /\  A. x  e.  A  ( z `  x )  e.  B
) }
2 nfcv 2317 . . . . 5  |-  F/_ y
z
3 nftru 1464 . . . . . . 7  |-  F/ x T.
4 nfcvd 2318 . . . . . . . 8  |-  ( T. 
->  F/_ y x )
5 nfixp.1 . . . . . . . . 9  |-  F/_ y A
65a1i 9 . . . . . . . 8  |-  ( T. 
->  F/_ y A )
74, 6nfeld 2333 . . . . . . 7  |-  ( T. 
->  F/ y  x  e.  A )
83, 7nfabd 2337 . . . . . 6  |-  ( T. 
->  F/_ y { x  |  x  e.  A } )
98mptru 1362 . . . . 5  |-  F/_ y { x  |  x  e.  A }
102, 9nffn 5304 . . . 4  |-  F/ y  z  Fn  { x  |  x  e.  A }
11 df-ral 2458 . . . . 5  |-  ( A. x  e.  A  (
z `  x )  e.  B  <->  A. x ( x  e.  A  ->  (
z `  x )  e.  B ) )
122a1i 9 . . . . . . . . . 10  |-  ( T. 
->  F/_ y z )
1312, 4nffvd 5519 . . . . . . . . 9  |-  ( T. 
->  F/_ y ( z `
 x ) )
14 nfixp.2 . . . . . . . . . 10  |-  F/_ y B
1514a1i 9 . . . . . . . . 9  |-  ( T. 
->  F/_ y B )
1613, 15nfeld 2333 . . . . . . . 8  |-  ( T. 
->  F/ y ( z `
 x )  e.  B )
177, 16nfimd 1583 . . . . . . 7  |-  ( T. 
->  F/ y ( x  e.  A  ->  (
z `  x )  e.  B ) )
183, 17nfald 1758 . . . . . 6  |-  ( T. 
->  F/ y A. x
( x  e.  A  ->  ( z `  x
)  e.  B ) )
1918mptru 1362 . . . . 5  |-  F/ y A. x ( x  e.  A  ->  (
z `  x )  e.  B )
2011, 19nfxfr 1472 . . . 4  |-  F/ y A. x  e.  A  ( z `  x
)  e.  B
2110, 20nfan 1563 . . 3  |-  F/ y ( z  Fn  {
x  |  x  e.  A }  /\  A. x  e.  A  (
z `  x )  e.  B )
2221nfab 2322 . 2  |-  F/_ y { z  |  ( z  Fn  { x  |  x  e.  A }  /\  A. x  e.  A  ( z `  x )  e.  B
) }
231, 22nfcxfr 2314 1  |-  F/_ y X_ x  e.  A  B
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1351   T. wtru 1354   F/wnf 1458    e. wcel 2146   {cab 2161   F/_wnfc 2304   A.wral 2453    Fn wfn 5203   ` cfv 5208   X_cixp 6688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-iota 5170  df-fun 5210  df-fn 5211  df-fv 5216  df-ixp 6689
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator