ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfixpxy Unicode version

Theorem nfixpxy 6806
Description: Bound-variable hypothesis builder for indexed Cartesian product. (Contributed by Mario Carneiro, 15-Oct-2016.) (Revised by Jim Kingdon, 15-Feb-2023.)
Hypotheses
Ref Expression
nfixp.1  |-  F/_ y A
nfixp.2  |-  F/_ y B
Assertion
Ref Expression
nfixpxy  |-  F/_ y X_ x  e.  A  B
Distinct variable group:    x, y
Allowed substitution hints:    A( x, y)    B( x, y)

Proof of Theorem nfixpxy
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-ixp 6788 . 2  |-  X_ x  e.  A  B  =  { z  |  ( z  Fn  { x  |  x  e.  A }  /\  A. x  e.  A  ( z `  x )  e.  B
) }
2 nfcv 2348 . . . . 5  |-  F/_ y
z
3 nftru 1489 . . . . . . 7  |-  F/ x T.
4 nfcvd 2349 . . . . . . . 8  |-  ( T. 
->  F/_ y x )
5 nfixp.1 . . . . . . . . 9  |-  F/_ y A
65a1i 9 . . . . . . . 8  |-  ( T. 
->  F/_ y A )
74, 6nfeld 2364 . . . . . . 7  |-  ( T. 
->  F/ y  x  e.  A )
83, 7nfabd 2368 . . . . . 6  |-  ( T. 
->  F/_ y { x  |  x  e.  A } )
98mptru 1382 . . . . 5  |-  F/_ y { x  |  x  e.  A }
102, 9nffn 5371 . . . 4  |-  F/ y  z  Fn  { x  |  x  e.  A }
11 df-ral 2489 . . . . 5  |-  ( A. x  e.  A  (
z `  x )  e.  B  <->  A. x ( x  e.  A  ->  (
z `  x )  e.  B ) )
122a1i 9 . . . . . . . . . 10  |-  ( T. 
->  F/_ y z )
1312, 4nffvd 5590 . . . . . . . . 9  |-  ( T. 
->  F/_ y ( z `
 x ) )
14 nfixp.2 . . . . . . . . . 10  |-  F/_ y B
1514a1i 9 . . . . . . . . 9  |-  ( T. 
->  F/_ y B )
1613, 15nfeld 2364 . . . . . . . 8  |-  ( T. 
->  F/ y ( z `
 x )  e.  B )
177, 16nfimd 1608 . . . . . . 7  |-  ( T. 
->  F/ y ( x  e.  A  ->  (
z `  x )  e.  B ) )
183, 17nfald 1783 . . . . . 6  |-  ( T. 
->  F/ y A. x
( x  e.  A  ->  ( z `  x
)  e.  B ) )
1918mptru 1382 . . . . 5  |-  F/ y A. x ( x  e.  A  ->  (
z `  x )  e.  B )
2011, 19nfxfr 1497 . . . 4  |-  F/ y A. x  e.  A  ( z `  x
)  e.  B
2110, 20nfan 1588 . . 3  |-  F/ y ( z  Fn  {
x  |  x  e.  A }  /\  A. x  e.  A  (
z `  x )  e.  B )
2221nfab 2353 . 2  |-  F/_ y { z  |  ( z  Fn  { x  |  x  e.  A }  /\  A. x  e.  A  ( z `  x )  e.  B
) }
231, 22nfcxfr 2345 1  |-  F/_ y X_ x  e.  A  B
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1371   T. wtru 1374   F/wnf 1483    e. wcel 2176   {cab 2191   F/_wnfc 2335   A.wral 2484    Fn wfn 5267   ` cfv 5272   X_cixp 6787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-iota 5233  df-fun 5274  df-fn 5275  df-fv 5280  df-ixp 6788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator