ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfin Unicode version

Theorem nfin 3369
Description: Bound-variable hypothesis builder for the intersection of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nfin.1  |-  F/_ x A
nfin.2  |-  F/_ x B
Assertion
Ref Expression
nfin  |-  F/_ x
( A  i^i  B
)

Proof of Theorem nfin
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfin5 3164 . 2  |-  ( A  i^i  B )  =  { y  e.  A  |  y  e.  B }
2 nfin.2 . . . 4  |-  F/_ x B
32nfcri 2333 . . 3  |-  F/ x  y  e.  B
4 nfin.1 . . 3  |-  F/_ x A
53, 4nfrabw 2678 . 2  |-  F/_ x { y  e.  A  |  y  e.  B }
61, 5nfcxfr 2336 1  |-  F/_ x
( A  i^i  B
)
Colors of variables: wff set class
Syntax hints:    e. wcel 2167   F/_wnfc 2326   {crab 2479    i^i cin 3156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rab 2484  df-in 3163
This theorem is referenced by:  csbing  3370  nfres  4948
  Copyright terms: Public domain W3C validator