Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrabxy Unicode version

Theorem nfrabxy 2611
 Description: A variable not free in a wff remains so in a restricted class abstraction. (Contributed by Jim Kingdon, 19-Jul-2018.)
Hypotheses
Ref Expression
nfrabxy.1
nfrabxy.2
Assertion
Ref Expression
nfrabxy
Distinct variable group:   ,
Allowed substitution hints:   (,)   (,)

Proof of Theorem nfrabxy
StepHypRef Expression
1 df-rab 2425 . 2
2 nfrabxy.2 . . . . 5
32nfcri 2275 . . . 4
4 nfrabxy.1 . . . 4
53, 4nfan 1544 . . 3
65nfab 2286 . 2
71, 6nfcxfr 2278 1
 Colors of variables: wff set class Syntax hints:   wa 103  wnf 1436   wcel 1480  cab 2125  wnfc 2268  crab 2420 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-rab 2425 This theorem is referenced by:  nfdif  3197  nfin  3282  nfse  4263  elfvmptrab1  5515  mpoxopoveq  6137  nfsup  6879  caucvgprprlemaddq  7516  ctiunct  11953
 Copyright terms: Public domain W3C validator