ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrabxy Unicode version

Theorem nfrabxy 2646
Description: A variable not free in a wff remains so in a restricted class abstraction. (Contributed by Jim Kingdon, 19-Jul-2018.)
Hypotheses
Ref Expression
nfrabxy.1  |-  F/ x ph
nfrabxy.2  |-  F/_ x A
Assertion
Ref Expression
nfrabxy  |-  F/_ x { y  e.  A  |  ph }
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    A( x, y)

Proof of Theorem nfrabxy
StepHypRef Expression
1 df-rab 2453 . 2  |-  { y  e.  A  |  ph }  =  { y  |  ( y  e.  A  /\  ph ) }
2 nfrabxy.2 . . . . 5  |-  F/_ x A
32nfcri 2302 . . . 4  |-  F/ x  y  e.  A
4 nfrabxy.1 . . . 4  |-  F/ x ph
53, 4nfan 1553 . . 3  |-  F/ x
( y  e.  A  /\  ph )
65nfab 2313 . 2  |-  F/_ x { y  |  ( y  e.  A  /\  ph ) }
71, 6nfcxfr 2305 1  |-  F/_ x { y  e.  A  |  ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 103   F/wnf 1448    e. wcel 2136   {cab 2151   F/_wnfc 2295   {crab 2448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rab 2453
This theorem is referenced by:  nfdif  3243  nfin  3328  nfse  4319  elfvmptrab1  5580  mpoxopoveq  6208  nfsup  6957  caucvgprprlemaddq  7649  ctiunct  12373
  Copyright terms: Public domain W3C validator