ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrabxy Unicode version

Theorem nfrabxy 2658
Description: A variable not free in a wff remains so in a restricted class abstraction. (Contributed by Jim Kingdon, 19-Jul-2018.)
Hypotheses
Ref Expression
nfrabxy.1  |-  F/ x ph
nfrabxy.2  |-  F/_ x A
Assertion
Ref Expression
nfrabxy  |-  F/_ x { y  e.  A  |  ph }
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    A( x, y)

Proof of Theorem nfrabxy
StepHypRef Expression
1 df-rab 2464 . 2  |-  { y  e.  A  |  ph }  =  { y  |  ( y  e.  A  /\  ph ) }
2 nfrabxy.2 . . . . 5  |-  F/_ x A
32nfcri 2313 . . . 4  |-  F/ x  y  e.  A
4 nfrabxy.1 . . . 4  |-  F/ x ph
53, 4nfan 1565 . . 3  |-  F/ x
( y  e.  A  /\  ph )
65nfab 2324 . 2  |-  F/_ x { y  |  ( y  e.  A  /\  ph ) }
71, 6nfcxfr 2316 1  |-  F/_ x { y  e.  A  |  ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 104   F/wnf 1460    e. wcel 2148   {cab 2163   F/_wnfc 2306   {crab 2459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rab 2464
This theorem is referenced by:  nfdif  3258  nfin  3343  nfse  4343  elfvmptrab1  5612  mpoxopoveq  6243  nfsup  6993  caucvgprprlemaddq  7709  ctiunct  12443
  Copyright terms: Public domain W3C validator