ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfres Unicode version

Theorem nfres 4911
Description: Bound-variable hypothesis builder for restriction. (Contributed by NM, 15-Sep-2003.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
nfres.1  |-  F/_ x A
nfres.2  |-  F/_ x B
Assertion
Ref Expression
nfres  |-  F/_ x
( A  |`  B )

Proof of Theorem nfres
StepHypRef Expression
1 df-res 4640 . 2  |-  ( A  |`  B )  =  ( A  i^i  ( B  X.  _V ) )
2 nfres.1 . . 3  |-  F/_ x A
3 nfres.2 . . . 4  |-  F/_ x B
4 nfcv 2319 . . . 4  |-  F/_ x _V
53, 4nfxp 4655 . . 3  |-  F/_ x
( B  X.  _V )
62, 5nfin 3343 . 2  |-  F/_ x
( A  i^i  ( B  X.  _V ) )
71, 6nfcxfr 2316 1  |-  F/_ x
( A  |`  B )
Colors of variables: wff set class
Syntax hints:   F/_wnfc 2306   _Vcvv 2739    i^i cin 3130    X. cxp 4626    |` cres 4630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rab 2464  df-in 3137  df-opab 4067  df-xp 4634  df-res 4640
This theorem is referenced by:  nfima  4980  nffrec  6399
  Copyright terms: Public domain W3C validator