ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfres Unicode version

Theorem nfres 4961
Description: Bound-variable hypothesis builder for restriction. (Contributed by NM, 15-Sep-2003.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
nfres.1  |-  F/_ x A
nfres.2  |-  F/_ x B
Assertion
Ref Expression
nfres  |-  F/_ x
( A  |`  B )

Proof of Theorem nfres
StepHypRef Expression
1 df-res 4687 . 2  |-  ( A  |`  B )  =  ( A  i^i  ( B  X.  _V ) )
2 nfres.1 . . 3  |-  F/_ x A
3 nfres.2 . . . 4  |-  F/_ x B
4 nfcv 2348 . . . 4  |-  F/_ x _V
53, 4nfxp 4702 . . 3  |-  F/_ x
( B  X.  _V )
62, 5nfin 3379 . 2  |-  F/_ x
( A  i^i  ( B  X.  _V ) )
71, 6nfcxfr 2345 1  |-  F/_ x
( A  |`  B )
Colors of variables: wff set class
Syntax hints:   F/_wnfc 2335   _Vcvv 2772    i^i cin 3165    X. cxp 4673    |` cres 4677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rab 2493  df-in 3172  df-opab 4106  df-xp 4681  df-res 4687
This theorem is referenced by:  nfima  5030  nffrec  6482
  Copyright terms: Public domain W3C validator