ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfres Unicode version

Theorem nfres 4861
Description: Bound-variable hypothesis builder for restriction. (Contributed by NM, 15-Sep-2003.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
nfres.1  |-  F/_ x A
nfres.2  |-  F/_ x B
Assertion
Ref Expression
nfres  |-  F/_ x
( A  |`  B )

Proof of Theorem nfres
StepHypRef Expression
1 df-res 4591 . 2  |-  ( A  |`  B )  =  ( A  i^i  ( B  X.  _V ) )
2 nfres.1 . . 3  |-  F/_ x A
3 nfres.2 . . . 4  |-  F/_ x B
4 nfcv 2296 . . . 4  |-  F/_ x _V
53, 4nfxp 4606 . . 3  |-  F/_ x
( B  X.  _V )
62, 5nfin 3309 . 2  |-  F/_ x
( A  i^i  ( B  X.  _V ) )
71, 6nfcxfr 2293 1  |-  F/_ x
( A  |`  B )
Colors of variables: wff set class
Syntax hints:   F/_wnfc 2283   _Vcvv 2709    i^i cin 3097    X. cxp 4577    |` cres 4581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136
This theorem depends on definitions:  df-bi 116  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-rab 2441  df-in 3104  df-opab 4022  df-xp 4585  df-res 4591
This theorem is referenced by:  nfima  4929  nffrec  6333
  Copyright terms: Public domain W3C validator