ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbing Unicode version

Theorem csbing 3357
Description: Distribute proper substitution through an intersection relation. (Contributed by Alan Sare, 22-Jul-2012.)
Assertion
Ref Expression
csbing  |-  ( A  e.  B  ->  [_ A  /  x ]_ ( C  i^i  D )  =  ( [_ A  /  x ]_ C  i^i  [_ A  /  x ]_ D ) )

Proof of Theorem csbing
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3075 . . 3  |-  ( y  =  A  ->  [_ y  /  x ]_ ( C  i^i  D )  = 
[_ A  /  x ]_ ( C  i^i  D
) )
2 csbeq1 3075 . . . 4  |-  ( y  =  A  ->  [_ y  /  x ]_ C  = 
[_ A  /  x ]_ C )
3 csbeq1 3075 . . . 4  |-  ( y  =  A  ->  [_ y  /  x ]_ D  = 
[_ A  /  x ]_ D )
42, 3ineq12d 3352 . . 3  |-  ( y  =  A  ->  ( [_ y  /  x ]_ C  i^i  [_ y  /  x ]_ D )  =  ( [_ A  /  x ]_ C  i^i  [_ A  /  x ]_ D ) )
51, 4eqeq12d 2204 . 2  |-  ( y  =  A  ->  ( [_ y  /  x ]_ ( C  i^i  D
)  =  ( [_ y  /  x ]_ C  i^i  [_ y  /  x ]_ D )  <->  [_ A  /  x ]_ ( C  i^i  D )  =  ( [_ A  /  x ]_ C  i^i  [_ A  /  x ]_ D ) ) )
6 vex 2755 . . 3  |-  y  e. 
_V
7 nfcsb1v 3105 . . . 4  |-  F/_ x [_ y  /  x ]_ C
8 nfcsb1v 3105 . . . 4  |-  F/_ x [_ y  /  x ]_ D
97, 8nfin 3356 . . 3  |-  F/_ x
( [_ y  /  x ]_ C  i^i  [_ y  /  x ]_ D )
10 csbeq1a 3081 . . . 4  |-  ( x  =  y  ->  C  =  [_ y  /  x ]_ C )
11 csbeq1a 3081 . . . 4  |-  ( x  =  y  ->  D  =  [_ y  /  x ]_ D )
1210, 11ineq12d 3352 . . 3  |-  ( x  =  y  ->  ( C  i^i  D )  =  ( [_ y  /  x ]_ C  i^i  [_ y  /  x ]_ D ) )
136, 9, 12csbief 3116 . 2  |-  [_ y  /  x ]_ ( C  i^i  D )  =  ( [_ y  /  x ]_ C  i^i  [_ y  /  x ]_ D )
145, 13vtoclg 2812 1  |-  ( A  e.  B  ->  [_ A  /  x ]_ ( C  i^i  D )  =  ( [_ A  /  x ]_ C  i^i  [_ A  /  x ]_ D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2160   [_csb 3072    i^i cin 3143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-in 3150
This theorem is referenced by:  csbresg  4928
  Copyright terms: Public domain W3C validator