ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbing Unicode version

Theorem csbing 3334
Description: Distribute proper substitution through an intersection relation. (Contributed by Alan Sare, 22-Jul-2012.)
Assertion
Ref Expression
csbing  |-  ( A  e.  B  ->  [_ A  /  x ]_ ( C  i^i  D )  =  ( [_ A  /  x ]_ C  i^i  [_ A  /  x ]_ D ) )

Proof of Theorem csbing
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3052 . . 3  |-  ( y  =  A  ->  [_ y  /  x ]_ ( C  i^i  D )  = 
[_ A  /  x ]_ ( C  i^i  D
) )
2 csbeq1 3052 . . . 4  |-  ( y  =  A  ->  [_ y  /  x ]_ C  = 
[_ A  /  x ]_ C )
3 csbeq1 3052 . . . 4  |-  ( y  =  A  ->  [_ y  /  x ]_ D  = 
[_ A  /  x ]_ D )
42, 3ineq12d 3329 . . 3  |-  ( y  =  A  ->  ( [_ y  /  x ]_ C  i^i  [_ y  /  x ]_ D )  =  ( [_ A  /  x ]_ C  i^i  [_ A  /  x ]_ D ) )
51, 4eqeq12d 2185 . 2  |-  ( y  =  A  ->  ( [_ y  /  x ]_ ( C  i^i  D
)  =  ( [_ y  /  x ]_ C  i^i  [_ y  /  x ]_ D )  <->  [_ A  /  x ]_ ( C  i^i  D )  =  ( [_ A  /  x ]_ C  i^i  [_ A  /  x ]_ D ) ) )
6 vex 2733 . . 3  |-  y  e. 
_V
7 nfcsb1v 3082 . . . 4  |-  F/_ x [_ y  /  x ]_ C
8 nfcsb1v 3082 . . . 4  |-  F/_ x [_ y  /  x ]_ D
97, 8nfin 3333 . . 3  |-  F/_ x
( [_ y  /  x ]_ C  i^i  [_ y  /  x ]_ D )
10 csbeq1a 3058 . . . 4  |-  ( x  =  y  ->  C  =  [_ y  /  x ]_ C )
11 csbeq1a 3058 . . . 4  |-  ( x  =  y  ->  D  =  [_ y  /  x ]_ D )
1210, 11ineq12d 3329 . . 3  |-  ( x  =  y  ->  ( C  i^i  D )  =  ( [_ y  /  x ]_ C  i^i  [_ y  /  x ]_ D ) )
136, 9, 12csbief 3093 . 2  |-  [_ y  /  x ]_ ( C  i^i  D )  =  ( [_ y  /  x ]_ C  i^i  [_ y  /  x ]_ D )
145, 13vtoclg 2790 1  |-  ( A  e.  B  ->  [_ A  /  x ]_ ( C  i^i  D )  =  ( [_ A  /  x ]_ C  i^i  [_ A  /  x ]_ D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141   [_csb 3049    i^i cin 3120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-in 3127
This theorem is referenced by:  csbresg  4892
  Copyright terms: Public domain W3C validator