ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfin GIF version

Theorem nfin 3333
Description: Bound-variable hypothesis builder for the intersection of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nfin.1 𝑥𝐴
nfin.2 𝑥𝐵
Assertion
Ref Expression
nfin 𝑥(𝐴𝐵)

Proof of Theorem nfin
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfin5 3128 . 2 (𝐴𝐵) = {𝑦𝐴𝑦𝐵}
2 nfin.2 . . . 4 𝑥𝐵
32nfcri 2306 . . 3 𝑥 𝑦𝐵
4 nfin.1 . . 3 𝑥𝐴
53, 4nfrabxy 2650 . 2 𝑥{𝑦𝐴𝑦𝐵}
61, 5nfcxfr 2309 1 𝑥(𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wcel 2141  wnfc 2299  {crab 2452  cin 3120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rab 2457  df-in 3127
This theorem is referenced by:  csbing  3334  nfres  4893
  Copyright terms: Public domain W3C validator