![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfin | GIF version |
Description: Bound-variable hypothesis builder for the intersection of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
nfin.1 | ⊢ Ⅎ𝑥𝐴 |
nfin.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfin | ⊢ Ⅎ𝑥(𝐴 ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfin5 3160 | . 2 ⊢ (𝐴 ∩ 𝐵) = {𝑦 ∈ 𝐴 ∣ 𝑦 ∈ 𝐵} | |
2 | nfin.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
3 | 2 | nfcri 2330 | . . 3 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 |
4 | nfin.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
5 | 3, 4 | nfrabw 2675 | . 2 ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝑦 ∈ 𝐵} |
6 | 1, 5 | nfcxfr 2333 | 1 ⊢ Ⅎ𝑥(𝐴 ∩ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 Ⅎwnfc 2323 {crab 2476 ∩ cin 3152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rab 2481 df-in 3159 |
This theorem is referenced by: csbing 3366 nfres 4944 |
Copyright terms: Public domain | W3C validator |