| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfin | GIF version | ||
| Description: Bound-variable hypothesis builder for the intersection of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfin.1 | ⊢ Ⅎ𝑥𝐴 |
| nfin.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfin | ⊢ Ⅎ𝑥(𝐴 ∩ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfin5 3172 | . 2 ⊢ (𝐴 ∩ 𝐵) = {𝑦 ∈ 𝐴 ∣ 𝑦 ∈ 𝐵} | |
| 2 | nfin.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 2 | nfcri 2341 | . . 3 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 |
| 4 | nfin.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 5 | 3, 4 | nfrabw 2686 | . 2 ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝑦 ∈ 𝐵} |
| 6 | 1, 5 | nfcxfr 2344 | 1 ⊢ Ⅎ𝑥(𝐴 ∩ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 Ⅎwnfc 2334 {crab 2487 ∩ cin 3164 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rab 2492 df-in 3171 |
| This theorem is referenced by: csbing 3379 nfres 4960 |
| Copyright terms: Public domain | W3C validator |