ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elintab Unicode version

Theorem elintab 3881
Description: Membership in the intersection of a class abstraction. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
inteqab.1  |-  A  e. 
_V
Assertion
Ref Expression
elintab  |-  ( A  e.  |^| { x  | 
ph }  <->  A. x
( ph  ->  A  e.  x ) )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem elintab
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 inteqab.1 . . 3  |-  A  e. 
_V
21elint 3876 . 2  |-  ( A  e.  |^| { x  | 
ph }  <->  A. y
( y  e.  {
x  |  ph }  ->  A  e.  y ) )
3 nfsab1 2183 . . . 4  |-  F/ x  y  e.  { x  |  ph }
4 nfv 1539 . . . 4  |-  F/ x  A  e.  y
53, 4nfim 1583 . . 3  |-  F/ x
( y  e.  {
x  |  ph }  ->  A  e.  y )
6 nfv 1539 . . 3  |-  F/ y ( ph  ->  A  e.  x )
7 eleq1 2256 . . . . 5  |-  ( y  =  x  ->  (
y  e.  { x  |  ph }  <->  x  e.  { x  |  ph }
) )
8 abid 2181 . . . . 5  |-  ( x  e.  { x  | 
ph }  <->  ph )
97, 8bitrdi 196 . . . 4  |-  ( y  =  x  ->  (
y  e.  { x  |  ph }  <->  ph ) )
10 eleq2 2257 . . . 4  |-  ( y  =  x  ->  ( A  e.  y  <->  A  e.  x ) )
119, 10imbi12d 234 . . 3  |-  ( y  =  x  ->  (
( y  e.  {
x  |  ph }  ->  A  e.  y )  <-> 
( ph  ->  A  e.  x ) ) )
125, 6, 11cbval 1765 . 2  |-  ( A. y ( y  e. 
{ x  |  ph }  ->  A  e.  y )  <->  A. x ( ph  ->  A  e.  x ) )
132, 12bitri 184 1  |-  ( A  e.  |^| { x  | 
ph }  <->  A. x
( ph  ->  A  e.  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1362    e. wcel 2164   {cab 2179   _Vcvv 2760   |^|cint 3870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-int 3871
This theorem is referenced by:  elintrab  3882  intmin4  3898  intab  3899  intid  4253
  Copyright terms: Public domain W3C validator