| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elintab | Unicode version | ||
| Description: Membership in the intersection of a class abstraction. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| inteqab.1 |
|
| Ref | Expression |
|---|---|
| elintab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inteqab.1 |
. . 3
| |
| 2 | 1 | elint 3880 |
. 2
|
| 3 | nfsab1 2186 |
. . . 4
| |
| 4 | nfv 1542 |
. . . 4
| |
| 5 | 3, 4 | nfim 1586 |
. . 3
|
| 6 | nfv 1542 |
. . 3
| |
| 7 | eleq1 2259 |
. . . . 5
| |
| 8 | abid 2184 |
. . . . 5
| |
| 9 | 7, 8 | bitrdi 196 |
. . . 4
|
| 10 | eleq2 2260 |
. . . 4
| |
| 11 | 9, 10 | imbi12d 234 |
. . 3
|
| 12 | 5, 6, 11 | cbval 1768 |
. 2
|
| 13 | 2, 12 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-int 3875 |
| This theorem is referenced by: elintrab 3886 intmin4 3902 intab 3903 intid 4257 |
| Copyright terms: Public domain | W3C validator |