ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elintab Unicode version

Theorem elintab 3857
Description: Membership in the intersection of a class abstraction. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
inteqab.1  |-  A  e. 
_V
Assertion
Ref Expression
elintab  |-  ( A  e.  |^| { x  | 
ph }  <->  A. x
( ph  ->  A  e.  x ) )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem elintab
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 inteqab.1 . . 3  |-  A  e. 
_V
21elint 3852 . 2  |-  ( A  e.  |^| { x  | 
ph }  <->  A. y
( y  e.  {
x  |  ph }  ->  A  e.  y ) )
3 nfsab1 2167 . . . 4  |-  F/ x  y  e.  { x  |  ph }
4 nfv 1528 . . . 4  |-  F/ x  A  e.  y
53, 4nfim 1572 . . 3  |-  F/ x
( y  e.  {
x  |  ph }  ->  A  e.  y )
6 nfv 1528 . . 3  |-  F/ y ( ph  ->  A  e.  x )
7 eleq1 2240 . . . . 5  |-  ( y  =  x  ->  (
y  e.  { x  |  ph }  <->  x  e.  { x  |  ph }
) )
8 abid 2165 . . . . 5  |-  ( x  e.  { x  | 
ph }  <->  ph )
97, 8bitrdi 196 . . . 4  |-  ( y  =  x  ->  (
y  e.  { x  |  ph }  <->  ph ) )
10 eleq2 2241 . . . 4  |-  ( y  =  x  ->  ( A  e.  y  <->  A  e.  x ) )
119, 10imbi12d 234 . . 3  |-  ( y  =  x  ->  (
( y  e.  {
x  |  ph }  ->  A  e.  y )  <-> 
( ph  ->  A  e.  x ) ) )
125, 6, 11cbval 1754 . 2  |-  ( A. y ( y  e. 
{ x  |  ph }  ->  A  e.  y )  <->  A. x ( ph  ->  A  e.  x ) )
132, 12bitri 184 1  |-  ( A  e.  |^| { x  | 
ph }  <->  A. x
( ph  ->  A  e.  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1351    e. wcel 2148   {cab 2163   _Vcvv 2739   |^|cint 3846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-int 3847
This theorem is referenced by:  elintrab  3858  intmin4  3874  intab  3875  intid  4226
  Copyright terms: Public domain W3C validator