Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elintab | Unicode version |
Description: Membership in the intersection of a class abstraction. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
inteqab.1 |
Ref | Expression |
---|---|
elintab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inteqab.1 | . . 3 | |
2 | 1 | elint 3830 | . 2 |
3 | nfsab1 2155 | . . . 4 | |
4 | nfv 1516 | . . . 4 | |
5 | 3, 4 | nfim 1560 | . . 3 |
6 | nfv 1516 | . . 3 | |
7 | eleq1 2229 | . . . . 5 | |
8 | abid 2153 | . . . . 5 | |
9 | 7, 8 | bitrdi 195 | . . . 4 |
10 | eleq2 2230 | . . . 4 | |
11 | 9, 10 | imbi12d 233 | . . 3 |
12 | 5, 6, 11 | cbval 1742 | . 2 |
13 | 2, 12 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1341 wcel 2136 cab 2151 cvv 2726 cint 3824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-int 3825 |
This theorem is referenced by: elintrab 3836 intmin4 3852 intab 3853 intid 4202 |
Copyright terms: Public domain | W3C validator |