ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elinti Unicode version

Theorem elinti 3884
Description: Membership in class intersection. (Contributed by NM, 14-Oct-1999.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
elinti  |-  ( A  e.  |^| B  ->  ( C  e.  B  ->  A  e.  C ) )

Proof of Theorem elinti
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elintg 3883 . . 3  |-  ( A  e.  |^| B  ->  ( A  e.  |^| B  <->  A. x  e.  B  A  e.  x ) )
2 eleq2 2260 . . . 4  |-  ( x  =  C  ->  ( A  e.  x  <->  A  e.  C ) )
32rspccv 2865 . . 3  |-  ( A. x  e.  B  A  e.  x  ->  ( C  e.  B  ->  A  e.  C ) )
41, 3biimtrdi 163 . 2  |-  ( A  e.  |^| B  ->  ( A  e.  |^| B  -> 
( C  e.  B  ->  A  e.  C ) ) )
54pm2.43i 49 1  |-  ( A  e.  |^| B  ->  ( C  e.  B  ->  A  e.  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167   A.wral 2475   |^|cint 3875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-int 3876
This theorem is referenced by:  subgintm  13404  subrngintm  13844  subrgintm  13875  lssintclm  14016
  Copyright terms: Public domain W3C validator