| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfint | GIF version | ||
| Description: Bound-variable hypothesis builder for intersection. (Contributed by NM, 2-Feb-1997.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
| Ref | Expression |
|---|---|
| nfint.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfint | ⊢ Ⅎ𝑥∩ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfint2 3924 | . 2 ⊢ ∩ 𝐴 = {𝑦 ∣ ∀𝑧 ∈ 𝐴 𝑦 ∈ 𝑧} | |
| 2 | nfint.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfv 1574 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝑧 | |
| 4 | 2, 3 | nfralxy 2568 | . . 3 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝐴 𝑦 ∈ 𝑧 |
| 5 | 4 | nfab 2377 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑧 ∈ 𝐴 𝑦 ∈ 𝑧} |
| 6 | 1, 5 | nfcxfr 2369 | 1 ⊢ Ⅎ𝑥∩ 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: {cab 2215 Ⅎwnfc 2359 ∀wral 2508 ∩ cint 3922 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-int 3923 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |