![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfint | GIF version |
Description: Bound-variable hypothesis builder for intersection. (Contributed by NM, 2-Feb-1997.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
Ref | Expression |
---|---|
nfint.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfint | ⊢ Ⅎ𝑥∩ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfint2 3860 | . 2 ⊢ ∩ 𝐴 = {𝑦 ∣ ∀𝑧 ∈ 𝐴 𝑦 ∈ 𝑧} | |
2 | nfint.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nfv 1538 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝑧 | |
4 | 2, 3 | nfralxy 2527 | . . 3 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝐴 𝑦 ∈ 𝑧 |
5 | 4 | nfab 2336 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑧 ∈ 𝐴 𝑦 ∈ 𝑧} |
6 | 1, 5 | nfcxfr 2328 | 1 ⊢ Ⅎ𝑥∩ 𝐴 |
Colors of variables: wff set class |
Syntax hints: {cab 2174 Ⅎwnfc 2318 ∀wral 2467 ∩ cint 3858 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2170 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-ral 2472 df-int 3859 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |