![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfpw | GIF version |
Description: Bound-variable hypothesis builder for power class. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
nfpw.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfpw | ⊢ Ⅎ𝑥𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pw 3589 | . 2 ⊢ 𝒫 𝐴 = {𝑦 ∣ 𝑦 ⊆ 𝐴} | |
2 | nfcv 2329 | . . . 4 ⊢ Ⅎ𝑥𝑦 | |
3 | nfpw.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | 2, 3 | nfss 3160 | . . 3 ⊢ Ⅎ𝑥 𝑦 ⊆ 𝐴 |
5 | 4 | nfab 2334 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ 𝑦 ⊆ 𝐴} |
6 | 1, 5 | nfcxfr 2326 | 1 ⊢ Ⅎ𝑥𝒫 𝐴 |
Colors of variables: wff set class |
Syntax hints: {cab 2173 Ⅎwnfc 2316 ⊆ wss 3141 𝒫 cpw 3587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-in 3147 df-ss 3154 df-pw 3589 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |