ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfpw GIF version

Theorem nfpw 3557
Description: Bound-variable hypothesis builder for power class. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypothesis
Ref Expression
nfpw.1 𝑥𝐴
Assertion
Ref Expression
nfpw 𝑥𝒫 𝐴

Proof of Theorem nfpw
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-pw 3546 . 2 𝒫 𝐴 = {𝑦𝑦𝐴}
2 nfcv 2299 . . . 4 𝑥𝑦
3 nfpw.1 . . . 4 𝑥𝐴
42, 3nfss 3121 . . 3 𝑥 𝑦𝐴
54nfab 2304 . 2 𝑥{𝑦𝑦𝐴}
61, 5nfcxfr 2296 1 𝑥𝒫 𝐴
Colors of variables: wff set class
Syntax hints:  {cab 2143  wnfc 2286  wss 3102  𝒫 cpw 3544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-in 3108  df-ss 3115  df-pw 3546
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator