ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfralya Unicode version

Theorem nfralya 2445
Description: Not-free for restricted universal quantification where  y and  A are distinct. See nfralxy 2443 for a version with  x and  y distinct instead. (Contributed by Jim Kingdon, 3-Jun-2018.)
Hypotheses
Ref Expression
nfralya.1  |-  F/_ x A
nfralya.2  |-  F/ x ph
Assertion
Ref Expression
nfralya  |-  F/ x A. y  e.  A  ph
Distinct variable group:    y, A
Allowed substitution hints:    ph( x, y)    A( x)

Proof of Theorem nfralya
StepHypRef Expression
1 nftru 1423 . . 3  |-  F/ y T.
2 nfralya.1 . . . 4  |-  F/_ x A
32a1i 9 . . 3  |-  ( T. 
->  F/_ x A )
4 nfralya.2 . . . 4  |-  F/ x ph
54a1i 9 . . 3  |-  ( T. 
->  F/ x ph )
61, 3, 5nfraldya 2441 . 2  |-  ( T. 
->  F/ x A. y  e.  A  ph )
76mptru 1321 1  |-  F/ x A. y  e.  A  ph
Colors of variables: wff set class
Syntax hints:   T. wtru 1313   F/wnf 1417   F/_wnfc 2240   A.wral 2388
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095
This theorem depends on definitions:  df-bi 116  df-tru 1315  df-nf 1418  df-sb 1717  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393
This theorem is referenced by:  nfiinya  3806  nfsup  6828  caucvgsrlemgt1  7530  supinfneg  9285  infsupneg  9286  ctiunctlemudc  11786
  Copyright terms: Public domain W3C validator