ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfralya Unicode version

Theorem nfralya 2570
Description: Not-free for restricted universal quantification where  y and  A are distinct. See nfralxy 2568 for a version with  x and  y distinct instead. (Contributed by Jim Kingdon, 3-Jun-2018.)
Hypotheses
Ref Expression
nfralya.1  |-  F/_ x A
nfralya.2  |-  F/ x ph
Assertion
Ref Expression
nfralya  |-  F/ x A. y  e.  A  ph
Distinct variable group:    y, A
Allowed substitution hints:    ph( x, y)    A( x)

Proof of Theorem nfralya
StepHypRef Expression
1 nftru 1512 . . 3  |-  F/ y T.
2 nfralya.1 . . . 4  |-  F/_ x A
32a1i 9 . . 3  |-  ( T. 
->  F/_ x A )
4 nfralya.2 . . . 4  |-  F/ x ph
54a1i 9 . . 3  |-  ( T. 
->  F/ x ph )
61, 3, 5nfraldya 2565 . 2  |-  ( T. 
->  F/ x A. y  e.  A  ph )
76mptru 1404 1  |-  F/ x A. y  e.  A  ph
Colors of variables: wff set class
Syntax hints:   T. wtru 1396   F/wnf 1506   F/_wnfc 2359   A.wral 2508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513
This theorem is referenced by:  nfiinya  3994  nfsup  7159  caucvgsrlemgt1  7982  axpre-suploclemres  8088  supinfneg  9790  infsupneg  9791  ctiunctlemudc  13008  trirec0  16412
  Copyright terms: Public domain W3C validator