ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfralya Unicode version

Theorem nfralya 2517
Description: Not-free for restricted universal quantification where  y and  A are distinct. See nfralxy 2515 for a version with  x and  y distinct instead. (Contributed by Jim Kingdon, 3-Jun-2018.)
Hypotheses
Ref Expression
nfralya.1  |-  F/_ x A
nfralya.2  |-  F/ x ph
Assertion
Ref Expression
nfralya  |-  F/ x A. y  e.  A  ph
Distinct variable group:    y, A
Allowed substitution hints:    ph( x, y)    A( x)

Proof of Theorem nfralya
StepHypRef Expression
1 nftru 1466 . . 3  |-  F/ y T.
2 nfralya.1 . . . 4  |-  F/_ x A
32a1i 9 . . 3  |-  ( T. 
->  F/_ x A )
4 nfralya.2 . . . 4  |-  F/ x ph
54a1i 9 . . 3  |-  ( T. 
->  F/ x ph )
61, 3, 5nfraldya 2512 . 2  |-  ( T. 
->  F/ x A. y  e.  A  ph )
76mptru 1362 1  |-  F/ x A. y  e.  A  ph
Colors of variables: wff set class
Syntax hints:   T. wtru 1354   F/wnf 1460   F/_wnfc 2306   A.wral 2455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460
This theorem is referenced by:  nfiinya  3916  nfsup  6991  caucvgsrlemgt1  7794  axpre-suploclemres  7900  supinfneg  9595  infsupneg  9596  ctiunctlemudc  12438  trirec0  14795
  Copyright terms: Public domain W3C validator