ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reseq12d Unicode version

Theorem reseq12d 4947
Description: Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.)
Hypotheses
Ref Expression
reseqd.1  |-  ( ph  ->  A  =  B )
reseqd.2  |-  ( ph  ->  C  =  D )
Assertion
Ref Expression
reseq12d  |-  ( ph  ->  ( A  |`  C )  =  ( B  |`  D ) )

Proof of Theorem reseq12d
StepHypRef Expression
1 reseqd.1 . . 3  |-  ( ph  ->  A  =  B )
21reseq1d 4945 . 2  |-  ( ph  ->  ( A  |`  C )  =  ( B  |`  C ) )
3 reseqd.2 . . 3  |-  ( ph  ->  C  =  D )
43reseq2d 4946 . 2  |-  ( ph  ->  ( B  |`  C )  =  ( B  |`  D ) )
52, 4eqtrd 2229 1  |-  ( ph  ->  ( A  |`  C )  =  ( B  |`  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    |` cres 4665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-opab 4095  df-xp 4669  df-res 4675
This theorem is referenced by:  tfrlem3ag  6367  tfrlem3a  6368  tfrlemi1  6390  tfr1onlem3ag  6395  setsvalg  12708  znval  14192  psrval  14220  isxms  14687  isms  14689
  Copyright terms: Public domain W3C validator