| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reseq12d | Unicode version | ||
| Description: Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.) |
| Ref | Expression |
|---|---|
| reseqd.1 |
|
| reseqd.2 |
|
| Ref | Expression |
|---|---|
| reseq12d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseqd.1 |
. . 3
| |
| 2 | 1 | reseq1d 4967 |
. 2
|
| 3 | reseqd.2 |
. . 3
| |
| 4 | 3 | reseq2d 4968 |
. 2
|
| 5 | 2, 4 | eqtrd 2239 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-in 3176 df-opab 4114 df-xp 4689 df-res 4695 |
| This theorem is referenced by: tfrlem3ag 6408 tfrlem3a 6409 tfrlemi1 6431 tfr1onlem3ag 6436 setsvalg 12937 znval 14473 psrval 14503 isxms 14998 isms 15000 |
| Copyright terms: Public domain | W3C validator |