Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reseq12d | Unicode version |
Description: Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.) |
Ref | Expression |
---|---|
reseqd.1 | |
reseqd.2 |
Ref | Expression |
---|---|
reseq12d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseqd.1 | . . 3 | |
2 | 1 | reseq1d 4865 | . 2 |
3 | reseqd.2 | . . 3 | |
4 | 3 | reseq2d 4866 | . 2 |
5 | 2, 4 | eqtrd 2190 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1335 cres 4588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-in 3108 df-opab 4026 df-xp 4592 df-res 4598 |
This theorem is referenced by: tfrlem3ag 6256 tfrlem3a 6257 tfrlemi1 6279 tfr1onlem3ag 6284 setsvalg 12231 isxms 12862 isms 12864 |
Copyright terms: Public domain | W3C validator |