| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfres | GIF version | ||
| Description: Bound-variable hypothesis builder for restriction. (Contributed by NM, 15-Sep-2003.) (Revised by David Abernethy, 19-Jun-2012.) |
| Ref | Expression |
|---|---|
| nfres.1 | ⊢ Ⅎ𝑥𝐴 |
| nfres.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfres | ⊢ Ⅎ𝑥(𝐴 ↾ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 4694 | . 2 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
| 2 | nfres.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfres.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 4 | nfcv 2349 | . . . 4 ⊢ Ⅎ𝑥V | |
| 5 | 3, 4 | nfxp 4709 | . . 3 ⊢ Ⅎ𝑥(𝐵 × V) |
| 6 | 2, 5 | nfin 3383 | . 2 ⊢ Ⅎ𝑥(𝐴 ∩ (𝐵 × V)) |
| 7 | 1, 6 | nfcxfr 2346 | 1 ⊢ Ⅎ𝑥(𝐴 ↾ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnfc 2336 Vcvv 2773 ∩ cin 3169 × cxp 4680 ↾ cres 4684 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rab 2494 df-in 3176 df-opab 4113 df-xp 4688 df-res 4694 |
| This theorem is referenced by: nfima 5038 nffrec 6494 |
| Copyright terms: Public domain | W3C validator |