![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfres | GIF version |
Description: Bound-variable hypothesis builder for restriction. (Contributed by NM, 15-Sep-2003.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
nfres.1 | ⊢ Ⅎ𝑥𝐴 |
nfres.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfres | ⊢ Ⅎ𝑥(𝐴 ↾ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 4656 | . 2 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
2 | nfres.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | nfres.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
4 | nfcv 2332 | . . . 4 ⊢ Ⅎ𝑥V | |
5 | 3, 4 | nfxp 4671 | . . 3 ⊢ Ⅎ𝑥(𝐵 × V) |
6 | 2, 5 | nfin 3356 | . 2 ⊢ Ⅎ𝑥(𝐴 ∩ (𝐵 × V)) |
7 | 1, 6 | nfcxfr 2329 | 1 ⊢ Ⅎ𝑥(𝐴 ↾ 𝐵) |
Colors of variables: wff set class |
Syntax hints: Ⅎwnfc 2319 Vcvv 2752 ∩ cin 3143 × cxp 4642 ↾ cres 4646 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-rab 2477 df-in 3150 df-opab 4080 df-xp 4650 df-res 4656 |
This theorem is referenced by: nfima 4996 nffrec 6421 |
Copyright terms: Public domain | W3C validator |