| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nfres | GIF version | ||
| Description: Bound-variable hypothesis builder for restriction. (Contributed by NM, 15-Sep-2003.) (Revised by David Abernethy, 19-Jun-2012.) | 
| Ref | Expression | 
|---|---|
| nfres.1 | ⊢ Ⅎ𝑥𝐴 | 
| nfres.2 | ⊢ Ⅎ𝑥𝐵 | 
| Ref | Expression | 
|---|---|
| nfres | ⊢ Ⅎ𝑥(𝐴 ↾ 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-res 4675 | . 2 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
| 2 | nfres.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfres.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 4 | nfcv 2339 | . . . 4 ⊢ Ⅎ𝑥V | |
| 5 | 3, 4 | nfxp 4690 | . . 3 ⊢ Ⅎ𝑥(𝐵 × V) | 
| 6 | 2, 5 | nfin 3369 | . 2 ⊢ Ⅎ𝑥(𝐴 ∩ (𝐵 × V)) | 
| 7 | 1, 6 | nfcxfr 2336 | 1 ⊢ Ⅎ𝑥(𝐴 ↾ 𝐵) | 
| Colors of variables: wff set class | 
| Syntax hints: Ⅎwnfc 2326 Vcvv 2763 ∩ cin 3156 × cxp 4661 ↾ cres 4665 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-in 3163 df-opab 4095 df-xp 4669 df-res 4675 | 
| This theorem is referenced by: nfima 5017 nffrec 6454 | 
| Copyright terms: Public domain | W3C validator |