ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfres GIF version

Theorem nfres 5006
Description: Bound-variable hypothesis builder for restriction. (Contributed by NM, 15-Sep-2003.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
nfres.1 𝑥𝐴
nfres.2 𝑥𝐵
Assertion
Ref Expression
nfres 𝑥(𝐴𝐵)

Proof of Theorem nfres
StepHypRef Expression
1 df-res 4730 . 2 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
2 nfres.1 . . 3 𝑥𝐴
3 nfres.2 . . . 4 𝑥𝐵
4 nfcv 2372 . . . 4 𝑥V
53, 4nfxp 4745 . . 3 𝑥(𝐵 × V)
62, 5nfin 3410 . 2 𝑥(𝐴 ∩ (𝐵 × V))
71, 6nfcxfr 2369 1 𝑥(𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wnfc 2359  Vcvv 2799  cin 3196   × cxp 4716  cres 4720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rab 2517  df-in 3203  df-opab 4145  df-xp 4724  df-res 4730
This theorem is referenced by:  nfima  5075  nffrec  6540
  Copyright terms: Public domain W3C validator