ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbresg Unicode version

Theorem csbresg 4910
Description: Distribute proper substitution through the restriction of a class. (Contributed by Alan Sare, 10-Nov-2012.)
Assertion
Ref Expression
csbresg  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( B  |`  C )  =  (
[_ A  /  x ]_ B  |`  [_ A  /  x ]_ C ) )

Proof of Theorem csbresg
StepHypRef Expression
1 csbing 3342 . . 3  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( B  i^i  ( C  X.  _V ) )  =  (
[_ A  /  x ]_ B  i^i  [_ A  /  x ]_ ( C  X.  _V ) ) )
2 csbxpg 4707 . . . . 5  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( C  X.  _V )  =  ( [_ A  /  x ]_ C  X.  [_ A  /  x ]_ _V ) )
3 csbconstg 3071 . . . . . 6  |-  ( A  e.  V  ->  [_ A  /  x ]_ _V  =  _V )
43xpeq2d 4650 . . . . 5  |-  ( A  e.  V  ->  ( [_ A  /  x ]_ C  X.  [_ A  /  x ]_ _V )  =  ( [_ A  /  x ]_ C  X.  _V ) )
52, 4eqtrd 2210 . . . 4  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( C  X.  _V )  =  ( [_ A  /  x ]_ C  X.  _V ) )
65ineq2d 3336 . . 3  |-  ( A  e.  V  ->  ( [_ A  /  x ]_ B  i^i  [_ A  /  x ]_ ( C  X.  _V ) )  =  ( [_ A  /  x ]_ B  i^i  ( [_ A  /  x ]_ C  X.  _V )
) )
71, 6eqtrd 2210 . 2  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( B  i^i  ( C  X.  _V ) )  =  (
[_ A  /  x ]_ B  i^i  ( [_ A  /  x ]_ C  X.  _V )
) )
8 df-res 4638 . . 3  |-  ( B  |`  C )  =  ( B  i^i  ( C  X.  _V ) )
98csbeq2i 3084 . 2  |-  [_ A  /  x ]_ ( B  |`  C )  =  [_ A  /  x ]_ ( B  i^i  ( C  X.  _V ) )
10 df-res 4638 . 2  |-  ( [_ A  /  x ]_ B  |` 
[_ A  /  x ]_ C )  =  (
[_ A  /  x ]_ B  i^i  ( [_ A  /  x ]_ C  X.  _V )
)
117, 9, 103eqtr4g 2235 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( B  |`  C )  =  (
[_ A  /  x ]_ B  |`  [_ A  /  x ]_ C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   _Vcvv 2737   [_csb 3057    i^i cin 3128    X. cxp 4624    |` cres 4628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-in 3135  df-opab 4065  df-xp 4632  df-res 4638
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator