ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbresg Unicode version

Theorem csbresg 4949
Description: Distribute proper substitution through the restriction of a class. (Contributed by Alan Sare, 10-Nov-2012.)
Assertion
Ref Expression
csbresg  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( B  |`  C )  =  (
[_ A  /  x ]_ B  |`  [_ A  /  x ]_ C ) )

Proof of Theorem csbresg
StepHypRef Expression
1 csbing 3370 . . 3  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( B  i^i  ( C  X.  _V ) )  =  (
[_ A  /  x ]_ B  i^i  [_ A  /  x ]_ ( C  X.  _V ) ) )
2 csbxpg 4744 . . . . 5  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( C  X.  _V )  =  ( [_ A  /  x ]_ C  X.  [_ A  /  x ]_ _V ) )
3 csbconstg 3098 . . . . . 6  |-  ( A  e.  V  ->  [_ A  /  x ]_ _V  =  _V )
43xpeq2d 4687 . . . . 5  |-  ( A  e.  V  ->  ( [_ A  /  x ]_ C  X.  [_ A  /  x ]_ _V )  =  ( [_ A  /  x ]_ C  X.  _V ) )
52, 4eqtrd 2229 . . . 4  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( C  X.  _V )  =  ( [_ A  /  x ]_ C  X.  _V ) )
65ineq2d 3364 . . 3  |-  ( A  e.  V  ->  ( [_ A  /  x ]_ B  i^i  [_ A  /  x ]_ ( C  X.  _V ) )  =  ( [_ A  /  x ]_ B  i^i  ( [_ A  /  x ]_ C  X.  _V )
) )
71, 6eqtrd 2229 . 2  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( B  i^i  ( C  X.  _V ) )  =  (
[_ A  /  x ]_ B  i^i  ( [_ A  /  x ]_ C  X.  _V )
) )
8 df-res 4675 . . 3  |-  ( B  |`  C )  =  ( B  i^i  ( C  X.  _V ) )
98csbeq2i 3111 . 2  |-  [_ A  /  x ]_ ( B  |`  C )  =  [_ A  /  x ]_ ( B  i^i  ( C  X.  _V ) )
10 df-res 4675 . 2  |-  ( [_ A  /  x ]_ B  |` 
[_ A  /  x ]_ C )  =  (
[_ A  /  x ]_ B  i^i  ( [_ A  /  x ]_ C  X.  _V )
)
117, 9, 103eqtr4g 2254 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( B  |`  C )  =  (
[_ A  /  x ]_ B  |`  [_ A  /  x ]_ C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   _Vcvv 2763   [_csb 3084    i^i cin 3156    X. cxp 4661    |` cres 4665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-in 3163  df-opab 4095  df-xp 4669  df-res 4675
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator