ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbresg Unicode version

Theorem csbresg 5007
Description: Distribute proper substitution through the restriction of a class. (Contributed by Alan Sare, 10-Nov-2012.)
Assertion
Ref Expression
csbresg  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( B  |`  C )  =  (
[_ A  /  x ]_ B  |`  [_ A  /  x ]_ C ) )

Proof of Theorem csbresg
StepHypRef Expression
1 csbing 3411 . . 3  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( B  i^i  ( C  X.  _V ) )  =  (
[_ A  /  x ]_ B  i^i  [_ A  /  x ]_ ( C  X.  _V ) ) )
2 csbxpg 4799 . . . . 5  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( C  X.  _V )  =  ( [_ A  /  x ]_ C  X.  [_ A  /  x ]_ _V ) )
3 csbconstg 3138 . . . . . 6  |-  ( A  e.  V  ->  [_ A  /  x ]_ _V  =  _V )
43xpeq2d 4742 . . . . 5  |-  ( A  e.  V  ->  ( [_ A  /  x ]_ C  X.  [_ A  /  x ]_ _V )  =  ( [_ A  /  x ]_ C  X.  _V ) )
52, 4eqtrd 2262 . . . 4  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( C  X.  _V )  =  ( [_ A  /  x ]_ C  X.  _V ) )
65ineq2d 3405 . . 3  |-  ( A  e.  V  ->  ( [_ A  /  x ]_ B  i^i  [_ A  /  x ]_ ( C  X.  _V ) )  =  ( [_ A  /  x ]_ B  i^i  ( [_ A  /  x ]_ C  X.  _V )
) )
71, 6eqtrd 2262 . 2  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( B  i^i  ( C  X.  _V ) )  =  (
[_ A  /  x ]_ B  i^i  ( [_ A  /  x ]_ C  X.  _V )
) )
8 df-res 4730 . . 3  |-  ( B  |`  C )  =  ( B  i^i  ( C  X.  _V ) )
98csbeq2i 3151 . 2  |-  [_ A  /  x ]_ ( B  |`  C )  =  [_ A  /  x ]_ ( B  i^i  ( C  X.  _V ) )
10 df-res 4730 . 2  |-  ( [_ A  /  x ]_ B  |` 
[_ A  /  x ]_ C )  =  (
[_ A  /  x ]_ B  i^i  ( [_ A  /  x ]_ C  X.  _V )
)
117, 9, 103eqtr4g 2287 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( B  |`  C )  =  (
[_ A  /  x ]_ B  |`  [_ A  /  x ]_ C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   _Vcvv 2799   [_csb 3124    i^i cin 3196    X. cxp 4716    |` cres 4720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-in 3203  df-opab 4145  df-xp 4724  df-res 4730
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator