| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfsbd | GIF version | ||
| Description: Deduction version of nfsb 1975. (Contributed by NM, 15-Feb-2013.) |
| Ref | Expression |
|---|---|
| nfsbd.1 | ⊢ Ⅎ𝑥𝜑 |
| nfsbd.2 | ⊢ (𝜑 → Ⅎ𝑧𝜓) |
| Ref | Expression |
|---|---|
| nfsbd | ⊢ (𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfsbd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nfri 1543 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | nfsbd.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑧𝜓) | |
| 4 | 3 | alimi 1479 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑥Ⅎ𝑧𝜓) |
| 5 | nfsbt 2005 | . 2 ⊢ (∀𝑥Ⅎ𝑧𝜓 → Ⅎ𝑧[𝑦 / 𝑥]𝜓) | |
| 6 | 2, 4, 5 | 3syl 17 | 1 ⊢ (𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 Ⅎwnf 1484 [wsb 1786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 |
| This theorem is referenced by: nfeud 2071 nfabd 2369 nfraldya 2542 nfrexdya 2543 cbvrald 15798 |
| Copyright terms: Public domain | W3C validator |