Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfsbd | GIF version |
Description: Deduction version of nfsb 1939. (Contributed by NM, 15-Feb-2013.) |
Ref | Expression |
---|---|
nfsbd.1 | ⊢ Ⅎ𝑥𝜑 |
nfsbd.2 | ⊢ (𝜑 → Ⅎ𝑧𝜓) |
Ref | Expression |
---|---|
nfsbd | ⊢ (𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfsbd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nfri 1512 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | nfsbd.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑧𝜓) | |
4 | 3 | alimi 1448 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑥Ⅎ𝑧𝜓) |
5 | nfsbt 1969 | . 2 ⊢ (∀𝑥Ⅎ𝑧𝜓 → Ⅎ𝑧[𝑦 / 𝑥]𝜓) | |
6 | 2, 4, 5 | 3syl 17 | 1 ⊢ (𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1346 Ⅎwnf 1453 [wsb 1755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 |
This theorem is referenced by: nfeud 2035 nfabd 2332 nfraldya 2505 nfrexdya 2506 cbvrald 13823 |
Copyright terms: Public domain | W3C validator |