| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nfsbd | GIF version | ||
| Description: Deduction version of nfsb 1965. (Contributed by NM, 15-Feb-2013.) | 
| Ref | Expression | 
|---|---|
| nfsbd.1 | ⊢ Ⅎ𝑥𝜑 | 
| nfsbd.2 | ⊢ (𝜑 → Ⅎ𝑧𝜓) | 
| Ref | Expression | 
|---|---|
| nfsbd | ⊢ (𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfsbd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nfri 1533 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | 
| 3 | nfsbd.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑧𝜓) | |
| 4 | 3 | alimi 1469 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑥Ⅎ𝑧𝜓) | 
| 5 | nfsbt 1995 | . 2 ⊢ (∀𝑥Ⅎ𝑧𝜓 → Ⅎ𝑧[𝑦 / 𝑥]𝜓) | |
| 6 | 2, 4, 5 | 3syl 17 | 1 ⊢ (𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∀wal 1362 Ⅎwnf 1474 [wsb 1776 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 | 
| This theorem is referenced by: nfeud 2061 nfabd 2359 nfraldya 2532 nfrexdya 2533 cbvrald 15434 | 
| Copyright terms: Public domain | W3C validator |