ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsbd GIF version

Theorem nfsbd 2006
Description: Deduction version of nfsb 1975. (Contributed by NM, 15-Feb-2013.)
Hypotheses
Ref Expression
nfsbd.1 𝑥𝜑
nfsbd.2 (𝜑 → Ⅎ𝑧𝜓)
Assertion
Ref Expression
nfsbd (𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜓)
Distinct variable group:   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem nfsbd
StepHypRef Expression
1 nfsbd.1 . . 3 𝑥𝜑
21nfri 1543 . 2 (𝜑 → ∀𝑥𝜑)
3 nfsbd.2 . . 3 (𝜑 → Ⅎ𝑧𝜓)
43alimi 1479 . 2 (∀𝑥𝜑 → ∀𝑥𝑧𝜓)
5 nfsbt 2005 . 2 (∀𝑥𝑧𝜓 → Ⅎ𝑧[𝑦 / 𝑥]𝜓)
62, 4, 53syl 17 1 (𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1371  wnf 1484  [wsb 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787
This theorem is referenced by:  nfeud  2071  nfabd  2369  nfraldya  2542  nfrexdya  2543  cbvrald  15798
  Copyright terms: Public domain W3C validator