ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsbd GIF version

Theorem nfsbd 1970
Description: Deduction version of nfsb 1939. (Contributed by NM, 15-Feb-2013.)
Hypotheses
Ref Expression
nfsbd.1 𝑥𝜑
nfsbd.2 (𝜑 → Ⅎ𝑧𝜓)
Assertion
Ref Expression
nfsbd (𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜓)
Distinct variable group:   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem nfsbd
StepHypRef Expression
1 nfsbd.1 . . 3 𝑥𝜑
21nfri 1512 . 2 (𝜑 → ∀𝑥𝜑)
3 nfsbd.2 . . 3 (𝜑 → Ⅎ𝑧𝜓)
43alimi 1448 . 2 (∀𝑥𝜑 → ∀𝑥𝑧𝜓)
5 nfsbt 1969 . 2 (∀𝑥𝑧𝜓 → Ⅎ𝑧[𝑦 / 𝑥]𝜓)
62, 4, 53syl 17 1 (𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1346  wnf 1453  [wsb 1755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756
This theorem is referenced by:  nfeud  2035  nfabd  2332  nfraldya  2505  nfrexdya  2506  cbvrald  13823
  Copyright terms: Public domain W3C validator