| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfsbt | GIF version | ||
| Description: Closed form of nfsb 1973. (Contributed by Jim Kingdon, 9-May-2018.) |
| Ref | Expression |
|---|---|
| nfsbt | ⊢ (∀𝑥Ⅎ𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1548 | . 2 ⊢ (∀𝑥Ⅎ𝑧𝜑 → ∀𝑤∀𝑥Ⅎ𝑧𝜑) | |
| 2 | nfsbxyt 1970 | . . . . 5 ⊢ (∀𝑥Ⅎ𝑧𝜑 → Ⅎ𝑧[𝑤 / 𝑥]𝜑) | |
| 3 | 2 | alimi 1477 | . . . 4 ⊢ (∀𝑤∀𝑥Ⅎ𝑧𝜑 → ∀𝑤Ⅎ𝑧[𝑤 / 𝑥]𝜑) |
| 4 | nfsbxyt 1970 | . . . 4 ⊢ (∀𝑤Ⅎ𝑧[𝑤 / 𝑥]𝜑 → Ⅎ𝑧[𝑦 / 𝑤][𝑤 / 𝑥]𝜑) | |
| 5 | 3, 4 | syl 14 | . . 3 ⊢ (∀𝑤∀𝑥Ⅎ𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑤][𝑤 / 𝑥]𝜑) |
| 6 | nfv 1550 | . . . . 5 ⊢ Ⅎ𝑤𝜑 | |
| 7 | 6 | sbco2 1992 | . . . 4 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| 8 | 7 | nfbii 1495 | . . 3 ⊢ (Ⅎ𝑧[𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
| 9 | 5, 8 | sylib 122 | . 2 ⊢ (∀𝑤∀𝑥Ⅎ𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
| 10 | 1, 9 | syl 14 | 1 ⊢ (∀𝑥Ⅎ𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1370 Ⅎwnf 1482 [wsb 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 |
| This theorem is referenced by: nfsbd 2004 setindft 15765 |
| Copyright terms: Public domain | W3C validator |