![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfsbt | GIF version |
Description: Closed form of nfsb 1958. (Contributed by Jim Kingdon, 9-May-2018.) |
Ref | Expression |
---|---|
nfsbt | ⊢ (∀𝑥Ⅎ𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1537 | . 2 ⊢ (∀𝑥Ⅎ𝑧𝜑 → ∀𝑤∀𝑥Ⅎ𝑧𝜑) | |
2 | nfsbxyt 1955 | . . . . 5 ⊢ (∀𝑥Ⅎ𝑧𝜑 → Ⅎ𝑧[𝑤 / 𝑥]𝜑) | |
3 | 2 | alimi 1466 | . . . 4 ⊢ (∀𝑤∀𝑥Ⅎ𝑧𝜑 → ∀𝑤Ⅎ𝑧[𝑤 / 𝑥]𝜑) |
4 | nfsbxyt 1955 | . . . 4 ⊢ (∀𝑤Ⅎ𝑧[𝑤 / 𝑥]𝜑 → Ⅎ𝑧[𝑦 / 𝑤][𝑤 / 𝑥]𝜑) | |
5 | 3, 4 | syl 14 | . . 3 ⊢ (∀𝑤∀𝑥Ⅎ𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑤][𝑤 / 𝑥]𝜑) |
6 | nfv 1539 | . . . . 5 ⊢ Ⅎ𝑤𝜑 | |
7 | 6 | sbco2 1977 | . . . 4 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
8 | 7 | nfbii 1484 | . . 3 ⊢ (Ⅎ𝑧[𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
9 | 5, 8 | sylib 122 | . 2 ⊢ (∀𝑤∀𝑥Ⅎ𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
10 | 1, 9 | syl 14 | 1 ⊢ (∀𝑥Ⅎ𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1362 Ⅎwnf 1471 [wsb 1773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 |
This theorem is referenced by: nfsbd 1989 setindft 15203 |
Copyright terms: Public domain | W3C validator |