Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfsbt | GIF version |
Description: Closed form of nfsb 1934. (Contributed by Jim Kingdon, 9-May-2018.) |
Ref | Expression |
---|---|
nfsbt | ⊢ (∀𝑥Ⅎ𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1514 | . 2 ⊢ (∀𝑥Ⅎ𝑧𝜑 → ∀𝑤∀𝑥Ⅎ𝑧𝜑) | |
2 | nfsbxyt 1931 | . . . . 5 ⊢ (∀𝑥Ⅎ𝑧𝜑 → Ⅎ𝑧[𝑤 / 𝑥]𝜑) | |
3 | 2 | alimi 1443 | . . . 4 ⊢ (∀𝑤∀𝑥Ⅎ𝑧𝜑 → ∀𝑤Ⅎ𝑧[𝑤 / 𝑥]𝜑) |
4 | nfsbxyt 1931 | . . . 4 ⊢ (∀𝑤Ⅎ𝑧[𝑤 / 𝑥]𝜑 → Ⅎ𝑧[𝑦 / 𝑤][𝑤 / 𝑥]𝜑) | |
5 | 3, 4 | syl 14 | . . 3 ⊢ (∀𝑤∀𝑥Ⅎ𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑤][𝑤 / 𝑥]𝜑) |
6 | nfv 1516 | . . . . 5 ⊢ Ⅎ𝑤𝜑 | |
7 | 6 | sbco2 1953 | . . . 4 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
8 | 7 | nfbii 1461 | . . 3 ⊢ (Ⅎ𝑧[𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
9 | 5, 8 | sylib 121 | . 2 ⊢ (∀𝑤∀𝑥Ⅎ𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
10 | 1, 9 | syl 14 | 1 ⊢ (∀𝑥Ⅎ𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1341 Ⅎwnf 1448 [wsb 1750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 |
This theorem is referenced by: nfsbd 1965 setindft 13847 |
Copyright terms: Public domain | W3C validator |