ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  notab Unicode version

Theorem notab 3407
Description: A class builder defined by a negation. (Contributed by FL, 18-Sep-2010.)
Assertion
Ref Expression
notab  |-  { x  |  -.  ph }  =  ( _V  \  { x  |  ph } )

Proof of Theorem notab
StepHypRef Expression
1 df-rab 2464 . . 3  |-  { x  e.  _V  |  -.  ph }  =  { x  |  ( x  e. 
_V  /\  -.  ph ) }
2 rabab 2760 . . 3  |-  { x  e.  _V  |  -.  ph }  =  { x  |  -.  ph }
31, 2eqtr3i 2200 . 2  |-  { x  |  ( x  e. 
_V  /\  -.  ph ) }  =  { x  |  -.  ph }
4 difab 3406 . . 3  |-  ( { x  |  x  e. 
_V }  \  {
x  |  ph }
)  =  { x  |  ( x  e. 
_V  /\  -.  ph ) }
5 abid2 2298 . . . 4  |-  { x  |  x  e.  _V }  =  _V
65difeq1i 3251 . . 3  |-  ( { x  |  x  e. 
_V }  \  {
x  |  ph }
)  =  ( _V 
\  { x  | 
ph } )
74, 6eqtr3i 2200 . 2  |-  { x  |  ( x  e. 
_V  /\  -.  ph ) }  =  ( _V  \  { x  |  ph } )
83, 7eqtr3i 2200 1  |-  { x  |  -.  ph }  =  ( _V  \  { x  |  ph } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    = wceq 1353    e. wcel 2148   {cab 2163   {crab 2459   _Vcvv 2739    \ cdif 3128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rab 2464  df-v 2741  df-dif 3133
This theorem is referenced by:  dfif3  3549
  Copyright terms: Public domain W3C validator