ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  notab Unicode version

Theorem notab 3388
Description: A class builder defined by a negation. (Contributed by FL, 18-Sep-2010.)
Assertion
Ref Expression
notab  |-  { x  |  -.  ph }  =  ( _V  \  { x  |  ph } )

Proof of Theorem notab
StepHypRef Expression
1 df-rab 2451 . . 3  |-  { x  e.  _V  |  -.  ph }  =  { x  |  ( x  e. 
_V  /\  -.  ph ) }
2 rabab 2743 . . 3  |-  { x  e.  _V  |  -.  ph }  =  { x  |  -.  ph }
31, 2eqtr3i 2187 . 2  |-  { x  |  ( x  e. 
_V  /\  -.  ph ) }  =  { x  |  -.  ph }
4 difab 3387 . . 3  |-  ( { x  |  x  e. 
_V }  \  {
x  |  ph }
)  =  { x  |  ( x  e. 
_V  /\  -.  ph ) }
5 abid2 2285 . . . 4  |-  { x  |  x  e.  _V }  =  _V
65difeq1i 3232 . . 3  |-  ( { x  |  x  e. 
_V }  \  {
x  |  ph }
)  =  ( _V 
\  { x  | 
ph } )
74, 6eqtr3i 2187 . 2  |-  { x  |  ( x  e. 
_V  /\  -.  ph ) }  =  ( _V  \  { x  |  ph } )
83, 7eqtr3i 2187 1  |-  { x  |  -.  ph }  =  ( _V  \  { x  |  ph } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    = wceq 1342    e. wcel 2135   {cab 2150   {crab 2446   _Vcvv 2722    \ cdif 3109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-ext 2146
This theorem depends on definitions:  df-bi 116  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-rab 2451  df-v 2724  df-dif 3114
This theorem is referenced by:  dfif3  3529
  Copyright terms: Public domain W3C validator