Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > notab | Unicode version |
Description: A class builder defined by a negation. (Contributed by FL, 18-Sep-2010.) |
Ref | Expression |
---|---|
notab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2451 | . . 3 | |
2 | rabab 2743 | . . 3 | |
3 | 1, 2 | eqtr3i 2187 | . 2 |
4 | difab 3387 | . . 3 | |
5 | abid2 2285 | . . . 4 | |
6 | 5 | difeq1i 3232 | . . 3 |
7 | 4, 6 | eqtr3i 2187 | . 2 |
8 | 3, 7 | eqtr3i 2187 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wa 103 wceq 1342 wcel 2135 cab 2150 crab 2446 cvv 2722 cdif 3109 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-ext 2146 |
This theorem depends on definitions: df-bi 116 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-rab 2451 df-v 2724 df-dif 3114 |
This theorem is referenced by: dfif3 3529 |
Copyright terms: Public domain | W3C validator |