| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > notab | Unicode version | ||
| Description: A class builder defined by a negation. (Contributed by FL, 18-Sep-2010.) |
| Ref | Expression |
|---|---|
| notab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 2517 |
. . 3
| |
| 2 | rabab 2821 |
. . 3
| |
| 3 | 1, 2 | eqtr3i 2252 |
. 2
|
| 4 | difab 3473 |
. . 3
| |
| 5 | abid2 2350 |
. . . 4
| |
| 6 | 5 | difeq1i 3318 |
. . 3
|
| 7 | 4, 6 | eqtr3i 2252 |
. 2
|
| 8 | 3, 7 | eqtr3i 2252 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-v 2801 df-dif 3199 |
| This theorem is referenced by: dfif3 3616 |
| Copyright terms: Public domain | W3C validator |