ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  notab Unicode version

Theorem notab 3433
Description: A class builder defined by a negation. (Contributed by FL, 18-Sep-2010.)
Assertion
Ref Expression
notab  |-  { x  |  -.  ph }  =  ( _V  \  { x  |  ph } )

Proof of Theorem notab
StepHypRef Expression
1 df-rab 2484 . . 3  |-  { x  e.  _V  |  -.  ph }  =  { x  |  ( x  e. 
_V  /\  -.  ph ) }
2 rabab 2784 . . 3  |-  { x  e.  _V  |  -.  ph }  =  { x  |  -.  ph }
31, 2eqtr3i 2219 . 2  |-  { x  |  ( x  e. 
_V  /\  -.  ph ) }  =  { x  |  -.  ph }
4 difab 3432 . . 3  |-  ( { x  |  x  e. 
_V }  \  {
x  |  ph }
)  =  { x  |  ( x  e. 
_V  /\  -.  ph ) }
5 abid2 2317 . . . 4  |-  { x  |  x  e.  _V }  =  _V
65difeq1i 3277 . . 3  |-  ( { x  |  x  e. 
_V }  \  {
x  |  ph }
)  =  ( _V 
\  { x  | 
ph } )
74, 6eqtr3i 2219 . 2  |-  { x  |  ( x  e. 
_V  /\  -.  ph ) }  =  ( _V  \  { x  |  ph } )
83, 7eqtr3i 2219 1  |-  { x  |  -.  ph }  =  ( _V  \  { x  |  ph } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    = wceq 1364    e. wcel 2167   {cab 2182   {crab 2479   _Vcvv 2763    \ cdif 3154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rab 2484  df-v 2765  df-dif 3159
This theorem is referenced by:  dfif3  3574
  Copyright terms: Public domain W3C validator