ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  notab GIF version

Theorem notab 3474
Description: A class builder defined by a negation. (Contributed by FL, 18-Sep-2010.)
Assertion
Ref Expression
notab {𝑥 ∣ ¬ 𝜑} = (V ∖ {𝑥𝜑})

Proof of Theorem notab
StepHypRef Expression
1 df-rab 2517 . . 3 {𝑥 ∈ V ∣ ¬ 𝜑} = {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝜑)}
2 rabab 2821 . . 3 {𝑥 ∈ V ∣ ¬ 𝜑} = {𝑥 ∣ ¬ 𝜑}
31, 2eqtr3i 2252 . 2 {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝜑)} = {𝑥 ∣ ¬ 𝜑}
4 difab 3473 . . 3 ({𝑥𝑥 ∈ V} ∖ {𝑥𝜑}) = {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝜑)}
5 abid2 2350 . . . 4 {𝑥𝑥 ∈ V} = V
65difeq1i 3318 . . 3 ({𝑥𝑥 ∈ V} ∖ {𝑥𝜑}) = (V ∖ {𝑥𝜑})
74, 6eqtr3i 2252 . 2 {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝜑)} = (V ∖ {𝑥𝜑})
83, 7eqtr3i 2252 1 {𝑥 ∣ ¬ 𝜑} = (V ∖ {𝑥𝜑})
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104   = wceq 1395  wcel 2200  {cab 2215  {crab 2512  Vcvv 2799  cdif 3194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rab 2517  df-v 2801  df-dif 3199
This theorem is referenced by:  dfif3  3616
  Copyright terms: Public domain W3C validator