ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  notab GIF version

Theorem notab 3392
Description: A class builder defined by a negation. (Contributed by FL, 18-Sep-2010.)
Assertion
Ref Expression
notab {𝑥 ∣ ¬ 𝜑} = (V ∖ {𝑥𝜑})

Proof of Theorem notab
StepHypRef Expression
1 df-rab 2453 . . 3 {𝑥 ∈ V ∣ ¬ 𝜑} = {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝜑)}
2 rabab 2747 . . 3 {𝑥 ∈ V ∣ ¬ 𝜑} = {𝑥 ∣ ¬ 𝜑}
31, 2eqtr3i 2188 . 2 {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝜑)} = {𝑥 ∣ ¬ 𝜑}
4 difab 3391 . . 3 ({𝑥𝑥 ∈ V} ∖ {𝑥𝜑}) = {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝜑)}
5 abid2 2287 . . . 4 {𝑥𝑥 ∈ V} = V
65difeq1i 3236 . . 3 ({𝑥𝑥 ∈ V} ∖ {𝑥𝜑}) = (V ∖ {𝑥𝜑})
74, 6eqtr3i 2188 . 2 {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝜑)} = (V ∖ {𝑥𝜑})
83, 7eqtr3i 2188 1 {𝑥 ∣ ¬ 𝜑} = (V ∖ {𝑥𝜑})
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 103   = wceq 1343  wcel 2136  {cab 2151  {crab 2448  Vcvv 2726  cdif 3113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rab 2453  df-v 2728  df-dif 3118
This theorem is referenced by:  dfif3  3533
  Copyright terms: Public domain W3C validator