Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > notab | GIF version |
Description: A class builder defined by a negation. (Contributed by FL, 18-Sep-2010.) |
Ref | Expression |
---|---|
notab | ⊢ {𝑥 ∣ ¬ 𝜑} = (V ∖ {𝑥 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2457 | . . 3 ⊢ {𝑥 ∈ V ∣ ¬ 𝜑} = {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝜑)} | |
2 | rabab 2751 | . . 3 ⊢ {𝑥 ∈ V ∣ ¬ 𝜑} = {𝑥 ∣ ¬ 𝜑} | |
3 | 1, 2 | eqtr3i 2193 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝜑)} = {𝑥 ∣ ¬ 𝜑} |
4 | difab 3396 | . . 3 ⊢ ({𝑥 ∣ 𝑥 ∈ V} ∖ {𝑥 ∣ 𝜑}) = {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝜑)} | |
5 | abid2 2291 | . . . 4 ⊢ {𝑥 ∣ 𝑥 ∈ V} = V | |
6 | 5 | difeq1i 3241 | . . 3 ⊢ ({𝑥 ∣ 𝑥 ∈ V} ∖ {𝑥 ∣ 𝜑}) = (V ∖ {𝑥 ∣ 𝜑}) |
7 | 4, 6 | eqtr3i 2193 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝜑)} = (V ∖ {𝑥 ∣ 𝜑}) |
8 | 3, 7 | eqtr3i 2193 | 1 ⊢ {𝑥 ∣ ¬ 𝜑} = (V ∖ {𝑥 ∣ 𝜑}) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 103 = wceq 1348 ∈ wcel 2141 {cab 2156 {crab 2452 Vcvv 2730 ∖ cdif 3118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rab 2457 df-v 2732 df-dif 3123 |
This theorem is referenced by: dfif3 3539 |
Copyright terms: Public domain | W3C validator |