Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unrab | Unicode version |
Description: Union of two restricted class abstractions. (Contributed by NM, 25-Mar-2004.) |
Ref | Expression |
---|---|
unrab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2453 | . . 3 | |
2 | df-rab 2453 | . . 3 | |
3 | 1, 2 | uneq12i 3274 | . 2 |
4 | df-rab 2453 | . . 3 | |
5 | unab 3389 | . . . 4 | |
6 | andi 808 | . . . . 5 | |
7 | 6 | abbii 2282 | . . . 4 |
8 | 5, 7 | eqtr4i 2189 | . . 3 |
9 | 4, 8 | eqtr4i 2189 | . 2 |
10 | 3, 9 | eqtr4i 2189 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wo 698 wceq 1343 wcel 2136 cab 2151 crab 2448 cun 3114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rab 2453 df-v 2728 df-un 3120 |
This theorem is referenced by: rabxmdc 3440 phiprmpw 12154 unennn 12330 znnen 12331 |
Copyright terms: Public domain | W3C validator |