| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unrab | Unicode version | ||
| Description: Union of two restricted class abstractions. (Contributed by NM, 25-Mar-2004.) |
| Ref | Expression |
|---|---|
| unrab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 2517 |
. . 3
| |
| 2 | df-rab 2517 |
. . 3
| |
| 3 | 1, 2 | uneq12i 3356 |
. 2
|
| 4 | df-rab 2517 |
. . 3
| |
| 5 | unab 3471 |
. . . 4
| |
| 6 | andi 823 |
. . . . 5
| |
| 7 | 6 | abbii 2345 |
. . . 4
|
| 8 | 5, 7 | eqtr4i 2253 |
. . 3
|
| 9 | 4, 8 | eqtr4i 2253 |
. 2
|
| 10 | 3, 9 | eqtr4i 2253 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-v 2801 df-un 3201 |
| This theorem is referenced by: rabxmdc 3523 phiprmpw 12739 unennn 12963 znnen 12964 lgsquadlem2 15751 |
| Copyright terms: Public domain | W3C validator |