ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfif3 Unicode version

Theorem dfif3 3574
Description: Alternate definition of the conditional operator df-if 3562. Note that  ph is independent of  x i.e. a constant true or false. (Contributed by NM, 25-Aug-2013.) (Revised by Mario Carneiro, 8-Sep-2013.)
Hypothesis
Ref Expression
dfif3.1  |-  C  =  { x  |  ph }
Assertion
Ref Expression
dfif3  |-  if (
ph ,  A ,  B )  =  ( ( A  i^i  C
)  u.  ( B  i^i  ( _V  \  C ) ) )
Distinct variable group:    ph, x
Allowed substitution hints:    A( x)    B( x)    C( x)

Proof of Theorem dfif3
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfif6 3563 . 2  |-  if (
ph ,  A ,  B )  =  ( { y  e.  A  |  ph }  u.  {
y  e.  B  |  -.  ph } )
2 dfif3.1 . . . . . 6  |-  C  =  { x  |  ph }
3 biidd 172 . . . . . . 7  |-  ( x  =  y  ->  ( ph 
<-> 
ph ) )
43cbvabv 2321 . . . . . 6  |-  { x  |  ph }  =  {
y  |  ph }
52, 4eqtri 2217 . . . . 5  |-  C  =  { y  |  ph }
65ineq2i 3361 . . . 4  |-  ( A  i^i  C )  =  ( A  i^i  {
y  |  ph }
)
7 dfrab3 3439 . . . 4  |-  { y  e.  A  |  ph }  =  ( A  i^i  { y  |  ph } )
86, 7eqtr4i 2220 . . 3  |-  ( A  i^i  C )  =  { y  e.  A  |  ph }
9 dfrab3 3439 . . . 4  |-  { y  e.  B  |  -.  ph }  =  ( B  i^i  { y  |  -.  ph } )
10 notab 3433 . . . . . 6  |-  { y  |  -.  ph }  =  ( _V  \  { y  |  ph } )
115difeq2i 3278 . . . . . 6  |-  ( _V 
\  C )  =  ( _V  \  {
y  |  ph }
)
1210, 11eqtr4i 2220 . . . . 5  |-  { y  |  -.  ph }  =  ( _V  \  C )
1312ineq2i 3361 . . . 4  |-  ( B  i^i  { y  |  -.  ph } )  =  ( B  i^i  ( _V  \  C ) )
149, 13eqtr2i 2218 . . 3  |-  ( B  i^i  ( _V  \  C ) )  =  { y  e.  B  |  -.  ph }
158, 14uneq12i 3315 . 2  |-  ( ( A  i^i  C )  u.  ( B  i^i  ( _V  \  C ) ) )  =  ( { y  e.  A  |  ph }  u.  {
y  e.  B  |  -.  ph } )
161, 15eqtr4i 2220 1  |-  if (
ph ,  A ,  B )  =  ( ( A  i^i  C
)  u.  ( B  i^i  ( _V  \  C ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1364   {cab 2182   {crab 2479   _Vcvv 2763    \ cdif 3154    u. cun 3155    i^i cin 3156   ifcif 3561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-if 3562
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator