ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfif3 Unicode version

Theorem dfif3 3539
Description: Alternate definition of the conditional operator df-if 3527. Note that  ph is independent of  x i.e. a constant true or false. (Contributed by NM, 25-Aug-2013.) (Revised by Mario Carneiro, 8-Sep-2013.)
Hypothesis
Ref Expression
dfif3.1  |-  C  =  { x  |  ph }
Assertion
Ref Expression
dfif3  |-  if (
ph ,  A ,  B )  =  ( ( A  i^i  C
)  u.  ( B  i^i  ( _V  \  C ) ) )
Distinct variable group:    ph, x
Allowed substitution hints:    A( x)    B( x)    C( x)

Proof of Theorem dfif3
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfif6 3528 . 2  |-  if (
ph ,  A ,  B )  =  ( { y  e.  A  |  ph }  u.  {
y  e.  B  |  -.  ph } )
2 dfif3.1 . . . . . 6  |-  C  =  { x  |  ph }
3 biidd 171 . . . . . . 7  |-  ( x  =  y  ->  ( ph 
<-> 
ph ) )
43cbvabv 2295 . . . . . 6  |-  { x  |  ph }  =  {
y  |  ph }
52, 4eqtri 2191 . . . . 5  |-  C  =  { y  |  ph }
65ineq2i 3325 . . . 4  |-  ( A  i^i  C )  =  ( A  i^i  {
y  |  ph }
)
7 dfrab3 3403 . . . 4  |-  { y  e.  A  |  ph }  =  ( A  i^i  { y  |  ph } )
86, 7eqtr4i 2194 . . 3  |-  ( A  i^i  C )  =  { y  e.  A  |  ph }
9 dfrab3 3403 . . . 4  |-  { y  e.  B  |  -.  ph }  =  ( B  i^i  { y  |  -.  ph } )
10 notab 3397 . . . . . 6  |-  { y  |  -.  ph }  =  ( _V  \  { y  |  ph } )
115difeq2i 3242 . . . . . 6  |-  ( _V 
\  C )  =  ( _V  \  {
y  |  ph }
)
1210, 11eqtr4i 2194 . . . . 5  |-  { y  |  -.  ph }  =  ( _V  \  C )
1312ineq2i 3325 . . . 4  |-  ( B  i^i  { y  |  -.  ph } )  =  ( B  i^i  ( _V  \  C ) )
149, 13eqtr2i 2192 . . 3  |-  ( B  i^i  ( _V  \  C ) )  =  { y  e.  B  |  -.  ph }
158, 14uneq12i 3279 . 2  |-  ( ( A  i^i  C )  u.  ( B  i^i  ( _V  \  C ) ) )  =  ( { y  e.  A  |  ph }  u.  {
y  e.  B  |  -.  ph } )
161, 15eqtr4i 2194 1  |-  if (
ph ,  A ,  B )  =  ( ( A  i^i  C
)  u.  ( B  i^i  ( _V  \  C ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1348   {cab 2156   {crab 2452   _Vcvv 2730    \ cdif 3118    u. cun 3119    i^i cin 3120   ifcif 3526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-if 3527
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator