ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfif3 Unicode version

Theorem dfif3 3616
Description: Alternate definition of the conditional operator df-if 3603. Note that  ph is independent of  x i.e. a constant true or false. (Contributed by NM, 25-Aug-2013.) (Revised by Mario Carneiro, 8-Sep-2013.)
Hypothesis
Ref Expression
dfif3.1  |-  C  =  { x  |  ph }
Assertion
Ref Expression
dfif3  |-  if (
ph ,  A ,  B )  =  ( ( A  i^i  C
)  u.  ( B  i^i  ( _V  \  C ) ) )
Distinct variable group:    ph, x
Allowed substitution hints:    A( x)    B( x)    C( x)

Proof of Theorem dfif3
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfif6 3604 . 2  |-  if (
ph ,  A ,  B )  =  ( { y  e.  A  |  ph }  u.  {
y  e.  B  |  -.  ph } )
2 dfif3.1 . . . . . 6  |-  C  =  { x  |  ph }
3 biidd 172 . . . . . . 7  |-  ( x  =  y  ->  ( ph 
<-> 
ph ) )
43cbvabv 2354 . . . . . 6  |-  { x  |  ph }  =  {
y  |  ph }
52, 4eqtri 2250 . . . . 5  |-  C  =  { y  |  ph }
65ineq2i 3402 . . . 4  |-  ( A  i^i  C )  =  ( A  i^i  {
y  |  ph }
)
7 dfrab3 3480 . . . 4  |-  { y  e.  A  |  ph }  =  ( A  i^i  { y  |  ph } )
86, 7eqtr4i 2253 . . 3  |-  ( A  i^i  C )  =  { y  e.  A  |  ph }
9 dfrab3 3480 . . . 4  |-  { y  e.  B  |  -.  ph }  =  ( B  i^i  { y  |  -.  ph } )
10 notab 3474 . . . . . 6  |-  { y  |  -.  ph }  =  ( _V  \  { y  |  ph } )
115difeq2i 3319 . . . . . 6  |-  ( _V 
\  C )  =  ( _V  \  {
y  |  ph }
)
1210, 11eqtr4i 2253 . . . . 5  |-  { y  |  -.  ph }  =  ( _V  \  C )
1312ineq2i 3402 . . . 4  |-  ( B  i^i  { y  |  -.  ph } )  =  ( B  i^i  ( _V  \  C ) )
149, 13eqtr2i 2251 . . 3  |-  ( B  i^i  ( _V  \  C ) )  =  { y  e.  B  |  -.  ph }
158, 14uneq12i 3356 . 2  |-  ( ( A  i^i  C )  u.  ( B  i^i  ( _V  \  C ) ) )  =  ( { y  e.  A  |  ph }  u.  {
y  e.  B  |  -.  ph } )
161, 15eqtr4i 2253 1  |-  if (
ph ,  A ,  B )  =  ( ( A  i^i  C
)  u.  ( B  i^i  ( _V  \  C ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1395   {cab 2215   {crab 2512   _Vcvv 2799    \ cdif 3194    u. cun 3195    i^i cin 3196   ifcif 3602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-if 3603
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator