ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssextss Unicode version

Theorem ssextss 4306
Description: An extensionality-like principle defining subclass in terms of subsets. (Contributed by NM, 30-Jun-2004.)
Assertion
Ref Expression
ssextss  |-  ( A 
C_  B  <->  A. x
( x  C_  A  ->  x  C_  B )
)
Distinct variable groups:    x, A    x, B

Proof of Theorem ssextss
StepHypRef Expression
1 sspwb 4302 . 2  |-  ( A 
C_  B  <->  ~P A  C_ 
~P B )
2 ssalel 3212 . 2  |-  ( ~P A  C_  ~P B  <->  A. x ( x  e. 
~P A  ->  x  e.  ~P B ) )
3 vex 2802 . . . . 5  |-  x  e. 
_V
43elpw 3655 . . . 4  |-  ( x  e.  ~P A  <->  x  C_  A
)
53elpw 3655 . . . 4  |-  ( x  e.  ~P B  <->  x  C_  B
)
64, 5imbi12i 239 . . 3  |-  ( ( x  e.  ~P A  ->  x  e.  ~P B
)  <->  ( x  C_  A  ->  x  C_  B
) )
76albii 1516 . 2  |-  ( A. x ( x  e. 
~P A  ->  x  e.  ~P B )  <->  A. x
( x  C_  A  ->  x  C_  B )
)
81, 2, 73bitri 206 1  |-  ( A 
C_  B  <->  A. x
( x  C_  A  ->  x  C_  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1393    e. wcel 2200    C_ wss 3197   ~Pcpw 3649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672
This theorem is referenced by:  ssext  4307  nssssr  4308
  Copyright terms: Public domain W3C validator