Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssextss | Unicode version |
Description: An extensionality-like principle defining subclass in terms of subsets. (Contributed by NM, 30-Jun-2004.) |
Ref | Expression |
---|---|
ssextss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspwb 4210 | . 2 | |
2 | dfss2 3142 | . 2 | |
3 | vex 2738 | . . . . 5 | |
4 | 3 | elpw 3578 | . . . 4 |
5 | 3 | elpw 3578 | . . . 4 |
6 | 4, 5 | imbi12i 239 | . . 3 |
7 | 6 | albii 1468 | . 2 |
8 | 1, 2, 7 | 3bitri 206 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 105 wal 1351 wcel 2146 wss 3127 cpw 3572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 |
This theorem is referenced by: ssext 4215 nssssr 4216 |
Copyright terms: Public domain | W3C validator |