ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssextss Unicode version

Theorem ssextss 4205
Description: An extensionality-like principle defining subclass in terms of subsets. (Contributed by NM, 30-Jun-2004.)
Assertion
Ref Expression
ssextss  |-  ( A 
C_  B  <->  A. x
( x  C_  A  ->  x  C_  B )
)
Distinct variable groups:    x, A    x, B

Proof of Theorem ssextss
StepHypRef Expression
1 sspwb 4201 . 2  |-  ( A 
C_  B  <->  ~P A  C_ 
~P B )
2 dfss2 3136 . 2  |-  ( ~P A  C_  ~P B  <->  A. x ( x  e. 
~P A  ->  x  e.  ~P B ) )
3 vex 2733 . . . . 5  |-  x  e. 
_V
43elpw 3572 . . . 4  |-  ( x  e.  ~P A  <->  x  C_  A
)
53elpw 3572 . . . 4  |-  ( x  e.  ~P B  <->  x  C_  B
)
64, 5imbi12i 238 . . 3  |-  ( ( x  e.  ~P A  ->  x  e.  ~P B
)  <->  ( x  C_  A  ->  x  C_  B
) )
76albii 1463 . 2  |-  ( A. x ( x  e. 
~P A  ->  x  e.  ~P B )  <->  A. x
( x  C_  A  ->  x  C_  B )
)
81, 2, 73bitri 205 1  |-  ( A 
C_  B  <->  A. x
( x  C_  A  ->  x  C_  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1346    e. wcel 2141    C_ wss 3121   ~Pcpw 3566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589
This theorem is referenced by:  ssext  4206  nssssr  4207
  Copyright terms: Public domain W3C validator