Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofreq Unicode version

Theorem ofreq 5989
 Description: Equality theorem for function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
Assertion
Ref Expression
ofreq

Proof of Theorem ofreq
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq 3935 . . . 4
21ralbidv 2438 . . 3
32opabbidv 3998 . 2
4 df-ofr 5987 . 2
5 df-ofr 5987 . 2
63, 4, 53eqtr4g 2198 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1332  wral 2417   cin 3071   class class class wbr 3933  copab 3992   cdm 4543  cfv 5127   cofr 5985 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-11 1485  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122 This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-ral 2422  df-br 3934  df-opab 3994  df-ofr 5987 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator