ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofreq Unicode version

Theorem ofreq 6139
Description: Equality theorem for function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
Assertion
Ref Expression
ofreq  |-  ( R  =  S  ->  oR R  =  oR S )

Proof of Theorem ofreq
Dummy variables  f  g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq 4035 . . . 4  |-  ( R  =  S  ->  (
( f `  x
) R ( g `
 x )  <->  ( f `  x ) S ( g `  x ) ) )
21ralbidv 2497 . . 3  |-  ( R  =  S  ->  ( A. x  e.  ( dom  f  i^i  dom  g
) ( f `  x ) R ( g `  x )  <->  A. x  e.  ( dom  f  i^i  dom  g
) ( f `  x ) S ( g `  x ) ) )
32opabbidv 4099 . 2  |-  ( R  =  S  ->  { <. f ,  g >.  |  A. x  e.  ( dom  f  i^i  dom  g )
( f `  x
) R ( g `
 x ) }  =  { <. f ,  g >.  |  A. x  e.  ( dom  f  i^i  dom  g )
( f `  x
) S ( g `
 x ) } )
4 df-ofr 6136 . 2  |-  oR R  =  { <. f ,  g >.  |  A. x  e.  ( dom  f  i^i  dom  g )
( f `  x
) R ( g `
 x ) }
5 df-ofr 6136 . 2  |-  oR S  =  { <. f ,  g >.  |  A. x  e.  ( dom  f  i^i  dom  g )
( f `  x
) S ( g `
 x ) }
63, 4, 53eqtr4g 2254 1  |-  ( R  =  S  ->  oR R  =  oR S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   A.wral 2475    i^i cin 3156   class class class wbr 4033   {copab 4093   dom cdm 4663   ` cfv 5258    oRcofr 6134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-ral 2480  df-br 4034  df-opab 4095  df-ofr 6136
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator