ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofreq Unicode version

Theorem ofreq 6222
Description: Equality theorem for function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
Assertion
Ref Expression
ofreq  |-  ( R  =  S  ->  oR R  =  oR S )

Proof of Theorem ofreq
Dummy variables  f  g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq 4085 . . . 4  |-  ( R  =  S  ->  (
( f `  x
) R ( g `
 x )  <->  ( f `  x ) S ( g `  x ) ) )
21ralbidv 2530 . . 3  |-  ( R  =  S  ->  ( A. x  e.  ( dom  f  i^i  dom  g
) ( f `  x ) R ( g `  x )  <->  A. x  e.  ( dom  f  i^i  dom  g
) ( f `  x ) S ( g `  x ) ) )
32opabbidv 4150 . 2  |-  ( R  =  S  ->  { <. f ,  g >.  |  A. x  e.  ( dom  f  i^i  dom  g )
( f `  x
) R ( g `
 x ) }  =  { <. f ,  g >.  |  A. x  e.  ( dom  f  i^i  dom  g )
( f `  x
) S ( g `
 x ) } )
4 df-ofr 6219 . 2  |-  oR R  =  { <. f ,  g >.  |  A. x  e.  ( dom  f  i^i  dom  g )
( f `  x
) R ( g `
 x ) }
5 df-ofr 6219 . 2  |-  oR S  =  { <. f ,  g >.  |  A. x  e.  ( dom  f  i^i  dom  g )
( f `  x
) S ( g `
 x ) }
63, 4, 53eqtr4g 2287 1  |-  ( R  =  S  ->  oR R  =  oR S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395   A.wral 2508    i^i cin 3196   class class class wbr 4083   {copab 4144   dom cdm 4719   ` cfv 5318    oRcofr 6217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-ral 2513  df-br 4084  df-opab 4146  df-ofr 6219
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator