Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ofreq | Unicode version |
Description: Equality theorem for function relation. (Contributed by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
ofreq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq 3991 | . . . 4 | |
2 | 1 | ralbidv 2470 | . . 3 |
3 | 2 | opabbidv 4055 | . 2 |
4 | df-ofr 6062 | . 2 | |
5 | df-ofr 6062 | . 2 | |
6 | 3, 4, 5 | 3eqtr4g 2228 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 wral 2448 cin 3120 class class class wbr 3989 copab 4049 cdm 4611 cfv 5198 cofr 6060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-ral 2453 df-br 3990 df-opab 4051 df-ofr 6062 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |