HomeHome Intuitionistic Logic Explorer
Theorem List (p. 61 of 137)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 6001-6100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcaov32d 6001* Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
 |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  C  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x F y )  =  ( y F x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x F y ) F z )  =  ( x F ( y F z ) ) )   =>    |-  ( ph  ->  (
 ( A F B ) F C )  =  ( ( A F C ) F B ) )
 
Theoremcaov12d 6002* Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
 |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  C  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x F y )  =  ( y F x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x F y ) F z )  =  ( x F ( y F z ) ) )   =>    |-  ( ph  ->  ( A F ( B F C ) )  =  ( B F ( A F C ) ) )
 
Theoremcaov31d 6003* Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
 |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  C  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x F y )  =  ( y F x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x F y ) F z )  =  ( x F ( y F z ) ) )   =>    |-  ( ph  ->  (
 ( A F B ) F C )  =  ( ( C F B ) F A ) )
 
Theoremcaov13d 6004* Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
 |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  C  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x F y )  =  ( y F x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x F y ) F z )  =  ( x F ( y F z ) ) )   =>    |-  ( ph  ->  ( A F ( B F C ) )  =  ( C F ( B F A ) ) )
 
Theoremcaov4d 6005* Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
 |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  C  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x F y )  =  ( y F x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x F y ) F z )  =  ( x F ( y F z ) ) )   &    |-  ( ph  ->  D  e.  S )   &    |-  (
 ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   =>    |-  ( ph  ->  ( ( A F B ) F ( C F D ) )  =  ( ( A F C ) F ( B F D ) ) )
 
Theoremcaov411d 6006* Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
 |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  C  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x F y )  =  ( y F x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x F y ) F z )  =  ( x F ( y F z ) ) )   &    |-  ( ph  ->  D  e.  S )   &    |-  (
 ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   =>    |-  ( ph  ->  ( ( A F B ) F ( C F D ) )  =  ( ( C F B ) F ( A F D ) ) )
 
Theoremcaov42d 6007* Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
 |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  C  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x F y )  =  ( y F x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x F y ) F z )  =  ( x F ( y F z ) ) )   &    |-  ( ph  ->  D  e.  S )   &    |-  (
 ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   =>    |-  ( ph  ->  ( ( A F B ) F ( C F D ) )  =  ( ( A F C ) F ( D F B ) ) )
 
Theoremcaov32 6008* Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  ( x F y )  =  ( y F x )   &    |-  ( ( x F y ) F z )  =  ( x F ( y F z ) )   =>    |-  ( ( A F B ) F C )  =  ( ( A F C ) F B )
 
Theoremcaov12 6009* Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  ( x F y )  =  ( y F x )   &    |-  ( ( x F y ) F z )  =  ( x F ( y F z ) )   =>    |-  ( A F ( B F C ) )  =  ( B F ( A F C ) )
 
Theoremcaov31 6010* Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  ( x F y )  =  ( y F x )   &    |-  ( ( x F y ) F z )  =  ( x F ( y F z ) )   =>    |-  ( ( A F B ) F C )  =  ( ( C F B ) F A )
 
Theoremcaov13 6011* Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  ( x F y )  =  ( y F x )   &    |-  ( ( x F y ) F z )  =  ( x F ( y F z ) )   =>    |-  ( A F ( B F C ) )  =  ( C F ( B F A ) )
 
Theoremcaovdilemd 6012* Lemma used by real number construction. (Contributed by Jim Kingdon, 16-Sep-2019.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x G y )  =  ( y G x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x F y ) G z )  =  ( ( x G z ) F ( y G z ) ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x G y ) G z )  =  ( x G ( y G z ) ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x G y )  e.  S )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  C  e.  S )   &    |-  ( ph  ->  D  e.  S )   &    |-  ( ph  ->  H  e.  S )   =>    |-  ( ph  ->  (
 ( ( A G C ) F ( B G D ) ) G H )  =  ( ( A G ( C G H ) ) F ( B G ( D G H ) ) ) )
 
Theoremcaovlem2d 6013* Rearrangement of expression involving multiplication ( G) and addition ( F). (Contributed by Jim Kingdon, 3-Jan-2020.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x G y )  =  ( y G x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x F y ) G z )  =  ( ( x G z ) F ( y G z ) ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x G y ) G z )  =  ( x G ( y G z ) ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x G y )  e.  S )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  C  e.  S )   &    |-  ( ph  ->  D  e.  S )   &    |-  ( ph  ->  H  e.  S )   &    |-  ( ph  ->  R  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x F y )  =  ( y F x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x F y ) F z )  =  ( x F ( y F z ) ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   =>    |-  ( ph  ->  (
 ( ( ( A G C ) F ( B G D ) ) G H ) F ( ( ( A G D ) F ( B G C ) ) G R ) )  =  ( ( A G ( ( C G H ) F ( D G R ) ) ) F ( B G ( ( C G R ) F ( D G H ) ) ) ) )
 
Theoremcaovimo 6014* Uniqueness of inverse element in commutative, associative operation with identity. The identity element is  B. (Contributed by Jim Kingdon, 18-Sep-2019.)
 |-  B  e.  S   &    |-  (
 ( x  e.  S  /\  y  e.  S )  ->  ( x F y )  =  ( y F x ) )   &    |-  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  ->  (
 ( x F y ) F z )  =  ( x F ( y F z ) ) )   &    |-  ( x  e.  S  ->  ( x F B )  =  x )   =>    |-  ( A  e.  S  ->  E* w ( w  e.  S  /\  ( A F w )  =  B ) )
 
Theoremgrprinvlem 6015* Lemma for grprinvd 6016. (Contributed by NM, 9-Aug-2013.)
 |-  ( ( ph  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y )  e.  B )   &    |-  ( ph  ->  O  e.  B )   &    |-  (
 ( ph  /\  x  e.  B )  ->  ( O  .+  x )  =  x )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  E. y  e.  B  ( y  .+  x )  =  O )   &    |-  (
 ( ph  /\  ps )  ->  X  e.  B )   &    |-  ( ( ph  /\  ps )  ->  ( X  .+  X )  =  X )   =>    |-  ( ( ph  /\  ps )  ->  X  =  O )
 
Theoremgrprinvd 6016* Deduce right inverse from left inverse and left identity in an associative structure (such as a group). (Contributed by NM, 10-Aug-2013.) (Proof shortened by Mario Carneiro, 6-Jan-2015.)
 |-  ( ( ph  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y )  e.  B )   &    |-  ( ph  ->  O  e.  B )   &    |-  (
 ( ph  /\  x  e.  B )  ->  ( O  .+  x )  =  x )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  E. y  e.  B  ( y  .+  x )  =  O )   &    |-  (
 ( ph  /\  ps )  ->  X  e.  B )   &    |-  ( ( ph  /\  ps )  ->  N  e.  B )   &    |-  ( ( ph  /\  ps )  ->  ( N  .+  X )  =  O )   =>    |-  ( ( ph  /\  ps )  ->  ( X  .+  N )  =  O )
 
Theoremgrpridd 6017* Deduce right identity from left inverse and left identity in an associative structure (such as a group). (Contributed by NM, 10-Aug-2013.) (Proof shortened by Mario Carneiro, 6-Jan-2015.)
 |-  ( ( ph  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y )  e.  B )   &    |-  ( ph  ->  O  e.  B )   &    |-  (
 ( ph  /\  x  e.  B )  ->  ( O  .+  x )  =  x )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  E. y  e.  B  ( y  .+  x )  =  O )   =>    |-  ( ( ph  /\  x  e.  B ) 
 ->  ( x  .+  O )  =  x )
 
2.6.12  Maps-to notation
 
Theoremelmpocl 6018* If a two-parameter class is inhabited, constrain the implicit pair. (Contributed by Stefan O'Rear, 7-Mar-2015.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  ( X  e.  ( S F T ) 
 ->  ( S  e.  A  /\  T  e.  B ) )
 
Theoremelmpocl1 6019* If a two-parameter class is inhabited, the first argument is in its nominal domain. (Contributed by FL, 15-Oct-2012.) (Revised by Stefan O'Rear, 7-Mar-2015.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  ( X  e.  ( S F T ) 
 ->  S  e.  A )
 
Theoremelmpocl2 6020* If a two-parameter class is inhabited, the second argument is in its nominal domain. (Contributed by FL, 15-Oct-2012.) (Revised by Stefan O'Rear, 7-Mar-2015.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  ( X  e.  ( S F T ) 
 ->  T  e.  B )
 
Theoremelovmpo 6021* Utility lemma for two-parameter classes. (Contributed by Stefan O'Rear, 21-Jan-2015.)
 |-  D  =  ( a  e.  A ,  b  e.  B  |->  C )   &    |-  C  e.  _V   &    |-  ( ( a  =  X  /\  b  =  Y )  ->  C  =  E )   =>    |-  ( F  e.  ( X D Y )  <->  ( X  e.  A  /\  Y  e.  B  /\  F  e.  E ) )
 
Theoremf1ocnvd 6022* Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 30-Apr-2015.)
 |-  F  =  ( x  e.  A  |->  C )   &    |-  ( ( ph  /\  x  e.  A )  ->  C  e.  W )   &    |-  ( ( ph  /\  y  e.  B ) 
 ->  D  e.  X )   &    |-  ( ph  ->  ( ( x  e.  A  /\  y  =  C )  <->  ( y  e.  B  /\  x  =  D )
 ) )   =>    |-  ( ph  ->  ( F : A -1-1-onto-> B  /\  `' F  =  ( y  e.  B  |->  D ) ) )
 
Theoremf1od 6023* Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 12-May-2014.)
 |-  F  =  ( x  e.  A  |->  C )   &    |-  ( ( ph  /\  x  e.  A )  ->  C  e.  W )   &    |-  ( ( ph  /\  y  e.  B ) 
 ->  D  e.  X )   &    |-  ( ph  ->  ( ( x  e.  A  /\  y  =  C )  <->  ( y  e.  B  /\  x  =  D )
 ) )   =>    |-  ( ph  ->  F : A -1-1-onto-> B )
 
Theoremf1ocnv2d 6024* Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 30-Apr-2015.)
 |-  F  =  ( x  e.  A  |->  C )   &    |-  ( ( ph  /\  x  e.  A )  ->  C  e.  B )   &    |-  ( ( ph  /\  y  e.  B ) 
 ->  D  e.  A )   &    |-  ( ( ph  /\  ( x  e.  A  /\  y  e.  B )
 )  ->  ( x  =  D  <->  y  =  C ) )   =>    |-  ( ph  ->  ( F : A -1-1-onto-> B  /\  `' F  =  ( y  e.  B  |->  D ) ) )
 
Theoremf1o2d 6025* Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 12-May-2014.)
 |-  F  =  ( x  e.  A  |->  C )   &    |-  ( ( ph  /\  x  e.  A )  ->  C  e.  B )   &    |-  ( ( ph  /\  y  e.  B ) 
 ->  D  e.  A )   &    |-  ( ( ph  /\  ( x  e.  A  /\  y  e.  B )
 )  ->  ( x  =  D  <->  y  =  C ) )   =>    |-  ( ph  ->  F : A -1-1-onto-> B )
 
Theoremf1opw2 6026* A one-to-one mapping induces a one-to-one mapping on power sets. This version of f1opw 6027 avoids the Axiom of Replacement. (Contributed by Mario Carneiro, 26-Jun-2015.)
 |-  ( ph  ->  F : A -1-1-onto-> B )   &    |-  ( ph  ->  ( `' F " a )  e.  _V )   &    |-  ( ph  ->  ( F "
 b )  e.  _V )   =>    |-  ( ph  ->  (
 b  e.  ~P A  |->  ( F " b ) ) : ~P A -1-1-onto-> ~P B )
 
Theoremf1opw 6027* A one-to-one mapping induces a one-to-one mapping on power sets. (Contributed by Stefan O'Rear, 18-Nov-2014.) (Revised by Mario Carneiro, 26-Jun-2015.)
 |-  ( F : A -1-1-onto-> B  ->  ( b  e.  ~P A  |->  ( F "
 b ) ) : ~P A -1-1-onto-> ~P B )
 
Theoremsuppssfv 6028* Formula building theorem for support restriction, on a function which preserves zero. (Contributed by Stefan O'Rear, 9-Mar-2015.)
 |-  ( ph  ->  ( `' ( x  e.  D  |->  A ) " ( _V  \  { Y }
 ) )  C_  L )   &    |-  ( ph  ->  ( F `  Y )  =  Z )   &    |-  ( ( ph  /\  x  e.  D ) 
 ->  A  e.  V )   =>    |-  ( ph  ->  ( `' ( x  e.  D  |->  ( F `  A ) ) " ( _V  \  { Z } )
 )  C_  L )
 
Theoremsuppssov1 6029* Formula building theorem for support restrictions: operator with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.)
 |-  ( ph  ->  ( `' ( x  e.  D  |->  A ) " ( _V  \  { Y }
 ) )  C_  L )   &    |-  ( ( ph  /\  v  e.  R )  ->  ( Y O v )  =  Z )   &    |-  ( ( ph  /\  x  e.  D ) 
 ->  A  e.  V )   &    |-  ( ( ph  /\  x  e.  D )  ->  B  e.  R )   =>    |-  ( ph  ->  ( `' ( x  e.  D  |->  ( A O B ) ) " ( _V  \  { Z } )
 )  C_  L )
 
2.6.13  Function operation
 
Syntaxcof 6030 Extend class notation to include mapping of an operation to a function operation.
 class  oF R
 
Syntaxcofr 6031 Extend class notation to include mapping of a binary relation to a function relation.
 class  oR R
 
Definitiondf-of 6032* Define the function operation map. The definition is designed so that if  R is a binary operation, then  oF R is the analogous operation on functions which corresponds to applying  R pointwise to the values of the functions. (Contributed by Mario Carneiro, 20-Jul-2014.)
 |-  oF R  =  ( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g
 )  |->  ( ( f `
  x ) R ( g `  x ) ) ) )
 
Definitiondf-ofr 6033* Define the function relation map. The definition is designed so that if  R is a binary relation, then  oF R is the analogous relation on functions which is true when each element of the left function relates to the corresponding element of the right function. (Contributed by Mario Carneiro, 28-Jul-2014.)
 |-  oR R  =  { <. f ,  g >.  |  A. x  e.  ( dom  f  i^i 
 dom  g ) ( f `  x ) R ( g `  x ) }
 
Theoremofeq 6034 Equality theorem for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.)
 |-  ( R  =  S  ->  oF R  =  oF S )
 
Theoremofreq 6035 Equality theorem for function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
 |-  ( R  =  S  ->  oR R  =  oR S )
 
Theoremofexg 6036 A function operation restricted to a set is a set. (Contributed by NM, 28-Jul-2014.)
 |-  ( A  e.  V  ->  (  oF R  |`  A )  e.  _V )
 
Theoremnfof 6037 Hypothesis builder for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.)
 |-  F/_ x R   =>    |-  F/_ x  oF R
 
Theoremnfofr 6038 Hypothesis builder for function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
 |-  F/_ x R   =>    |-  F/_ x  oR R
 
Theoremoffval 6039* Value of an operation applied to two functions. (Contributed by Mario Carneiro, 20-Jul-2014.)
 |-  ( ph  ->  F  Fn  A )   &    |-  ( ph  ->  G  Fn  B )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( A  i^i  B )  =  S   &    |-  (
 ( ph  /\  x  e.  A )  ->  ( F `  x )  =  C )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  ( G `  x )  =  D )   =>    |-  ( ph  ->  ( F  oF R G )  =  ( x  e.  S  |->  ( C R D ) ) )
 
Theoremofrfval 6040* Value of a relation applied to two functions. (Contributed by Mario Carneiro, 28-Jul-2014.)
 |-  ( ph  ->  F  Fn  A )   &    |-  ( ph  ->  G  Fn  B )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( A  i^i  B )  =  S   &    |-  (
 ( ph  /\  x  e.  A )  ->  ( F `  x )  =  C )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  ( G `  x )  =  D )   =>    |-  ( ph  ->  ( F  oR R G  <->  A. x  e.  S  C R D ) )
 
Theoremofvalg 6041 Evaluate a function operation at a point. (Contributed by Mario Carneiro, 20-Jul-2014.) (Revised by Jim Kingdon, 22-Nov-2023.)
 |-  ( ph  ->  F  Fn  A )   &    |-  ( ph  ->  G  Fn  B )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( A  i^i  B )  =  S   &    |-  (
 ( ph  /\  X  e.  A )  ->  ( F `
  X )  =  C )   &    |-  ( ( ph  /\  X  e.  B ) 
 ->  ( G `  X )  =  D )   &    |-  (
 ( ph  /\  X  e.  S )  ->  ( C R D )  e.  U )   =>    |-  ( ( ph  /\  X  e.  S )  ->  (
 ( F  oF R G ) `  X )  =  ( C R D ) )
 
Theoremofrval 6042 Exhibit a function relation at a point. (Contributed by Mario Carneiro, 28-Jul-2014.)
 |-  ( ph  ->  F  Fn  A )   &    |-  ( ph  ->  G  Fn  B )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( A  i^i  B )  =  S   &    |-  (
 ( ph  /\  X  e.  A )  ->  ( F `
  X )  =  C )   &    |-  ( ( ph  /\  X  e.  B ) 
 ->  ( G `  X )  =  D )   =>    |-  (
 ( ph  /\  F  oR R G  /\  X  e.  S )  ->  C R D )
 
Theoremofmresval 6043 Value of a restriction of the function operation map. (Contributed by NM, 20-Oct-2014.)
 |-  ( ph  ->  F  e.  A )   &    |-  ( ph  ->  G  e.  B )   =>    |-  ( ph  ->  ( F (  oF R  |`  ( A  X.  B ) ) G )  =  ( F  oF R G ) )
 
Theoremoff 6044* The function operation produces a function. (Contributed by Mario Carneiro, 20-Jul-2014.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  T )
 )  ->  ( x R y )  e.  U )   &    |-  ( ph  ->  F : A --> S )   &    |-  ( ph  ->  G : B
 --> T )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( A  i^i  B )  =  C   =>    |-  ( ph  ->  ( F  oF R G ) : C --> U )
 
Theoremoffeq 6045* Convert an identity of the operation to the analogous identity on the function operation. (Contributed by Jim Kingdon, 26-Nov-2023.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  T )
 )  ->  ( x R y )  e.  U )   &    |-  ( ph  ->  F : A --> S )   &    |-  ( ph  ->  G : B
 --> T )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( A  i^i  B )  =  C   &    |-  ( ph  ->  H : C --> U )   &    |-  ( ( ph  /\  x  e.  A )  ->  ( F `  x )  =  D )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  ( G `  x )  =  E )   &    |-  (
 ( ph  /\  x  e.  C )  ->  ( D R E )  =  ( H `  x ) )   =>    |-  ( ph  ->  ( F  oF R G )  =  H )
 
Theoremofres 6046 Restrict the operands of a function operation to the same domain as that of the operation itself. (Contributed by Mario Carneiro, 15-Sep-2014.)
 |-  ( ph  ->  F  Fn  A )   &    |-  ( ph  ->  G  Fn  B )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( A  i^i  B )  =  C   =>    |-  ( ph  ->  ( F  oF R G )  =  ( ( F  |`  C )  oF R ( G  |`  C )
 ) )
 
Theoremoffval2 6047* The function operation expressed as a mapping. (Contributed by Mario Carneiro, 20-Jul-2014.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  e.  W )   &    |-  ( ( ph  /\  x  e.  A )  ->  C  e.  X )   &    |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )   &    |-  ( ph  ->  G  =  ( x  e.  A  |->  C ) )   =>    |-  ( ph  ->  ( F  oF R G )  =  ( x  e.  A  |->  ( B R C ) ) )
 
Theoremofrfval2 6048* The function relation acting on maps. (Contributed by Mario Carneiro, 20-Jul-2014.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  e.  W )   &    |-  ( ( ph  /\  x  e.  A )  ->  C  e.  X )   &    |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )   &    |-  ( ph  ->  G  =  ( x  e.  A  |->  C ) )   =>    |-  ( ph  ->  ( F  oR R G  <->  A. x  e.  A  B R C ) )
 
Theoremsuppssof1 6049* Formula building theorem for support restrictions: vector operation with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.)
 |-  ( ph  ->  ( `' A " ( _V  \  { Y } )
 )  C_  L )   &    |-  (
 ( ph  /\  v  e.  R )  ->  ( Y O v )  =  Z )   &    |-  ( ph  ->  A : D --> V )   &    |-  ( ph  ->  B : D
 --> R )   &    |-  ( ph  ->  D  e.  W )   =>    |-  ( ph  ->  ( `' ( A  oF O B ) " ( _V  \  { Z }
 ) )  C_  L )
 
Theoremofco 6050 The composition of a function operation with another function. (Contributed by Mario Carneiro, 19-Dec-2014.)
 |-  ( ph  ->  F  Fn  A )   &    |-  ( ph  ->  G  Fn  B )   &    |-  ( ph  ->  H : D --> C )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( ph  ->  D  e.  X )   &    |-  ( A  i^i  B )  =  C   =>    |-  ( ph  ->  ( ( F  oF R G )  o.  H )  =  ( ( F  o.  H )  oF R ( G  o.  H ) ) )
 
Theoremoffveqb 6051* Equivalent expressions for equality with a function operation. (Contributed by NM, 9-Oct-2014.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  F  Fn  A )   &    |-  ( ph  ->  G  Fn  A )   &    |-  ( ph  ->  H  Fn  A )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  ( F `  x )  =  B )   &    |-  (
 ( ph  /\  x  e.  A )  ->  ( G `  x )  =  C )   =>    |-  ( ph  ->  ( H  =  ( F  oF R G )  <->  A. x  e.  A  ( H `  x )  =  ( B R C ) ) )
 
Theoremofc12 6052 Function operation on two constant functions. (Contributed by Mario Carneiro, 28-Jul-2014.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( ph  ->  C  e.  X )   =>    |-  ( ph  ->  (
 ( A  X.  { B } )  oF R ( A  X.  { C } ) )  =  ( A  X.  { ( B R C ) } ) )
 
Theoremcaofref 6053* Transfer a reflexive law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  F : A --> S )   &    |-  ( ( ph  /\  x  e.  S )  ->  x R x )   =>    |-  ( ph  ->  F  oR R F )
 
Theoremcaofinvl 6054* Transfer a left inverse law to the function operation. (Contributed by NM, 22-Oct-2014.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  F : A --> S )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( ph  ->  N : S --> S )   &    |-  ( ph  ->  G  =  ( v  e.  A  |->  ( N `  ( F `
  v ) ) ) )   &    |-  ( ( ph  /\  x  e.  S ) 
 ->  ( ( N `  x ) R x )  =  B )   =>    |-  ( ph  ->  ( G  oF R F )  =  ( A  X.  { B } ) )
 
Theoremcaofcom 6055* Transfer a commutative law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  F : A --> S )   &    |-  ( ph  ->  G : A
 --> S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x R y )  =  ( y R x ) )   =>    |-  ( ph  ->  ( F  oF R G )  =  ( G  oF R F ) )
 
Theoremcaofrss 6056* Transfer a relation subset law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  F : A --> S )   &    |-  ( ph  ->  G : A
 --> S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x R y  ->  x T y ) )   =>    |-  ( ph  ->  ( F  oR R G  ->  F  oR T G ) )
 
Theoremcaoftrn 6057* Transfer a transitivity law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  F : A --> S )   &    |-  ( ph  ->  G : A
 --> S )   &    |-  ( ph  ->  H : A --> S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S )
 )  ->  ( ( x R y  /\  y T z )  ->  x U z ) )   =>    |-  ( ph  ->  ( ( F  oR R G  /\  G  oR T H )  ->  F  oR U H ) )
 
2.6.14  Functions (continued)
 
TheoremresfunexgALT 6058 The restriction of a function to a set exists. Compare Proposition 6.17 of [TakeutiZaring] p. 28. This version has a shorter proof than resfunexg 5688 but requires ax-pow 4135 and ax-un 4393. (Contributed by NM, 7-Apr-1995.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ( Fun  A  /\  B  e.  C ) 
 ->  ( A  |`  B )  e.  _V )
 
Theoremcofunexg 6059 Existence of a composition when the first member is a function. (Contributed by NM, 8-Oct-2007.)
 |-  ( ( Fun  A  /\  B  e.  C ) 
 ->  ( A  o.  B )  e.  _V )
 
Theoremcofunex2g 6060 Existence of a composition when the second member is one-to-one. (Contributed by NM, 8-Oct-2007.)
 |-  ( ( A  e.  V  /\  Fun  `' B )  ->  ( A  o.  B )  e.  _V )
 
TheoremfnexALT 6061 If the domain of a function is a set, the function is a set. Theorem 6.16(1) of [TakeutiZaring] p. 28. This theorem is derived using the Axiom of Replacement in the form of funimaexg 5254. This version of fnex 5689 uses ax-pow 4135 and ax-un 4393, whereas fnex 5689 does not. (Contributed by NM, 14-Aug-1994.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ( F  Fn  A  /\  A  e.  B )  ->  F  e.  _V )
 
Theoremfunrnex 6062 If the domain of a function exists, so does its range. Part of Theorem 4.15(v) of [Monk1] p. 46. This theorem is derived using the Axiom of Replacement in the form of funex 5690. (Contributed by NM, 11-Nov-1995.)
 |-  ( dom  F  e.  B  ->  ( Fun  F  ->  ran  F  e.  _V ) )
 
Theoremfornex 6063 If the domain of an onto function exists, so does its codomain. (Contributed by NM, 23-Jul-2004.)
 |-  ( A  e.  C  ->  ( F : A -onto-> B  ->  B  e.  _V ) )
 
Theoremf1dmex 6064 If the codomain of a one-to-one function exists, so does its domain. This can be thought of as a form of the Axiom of Replacement. (Contributed by NM, 4-Sep-2004.)
 |-  ( ( F : A -1-1-> B  /\  B  e.  C )  ->  A  e.  _V )
 
Theoremabrexex 6065* Existence of a class abstraction of existentially restricted sets.  x is normally a free-variable parameter in the class expression substituted for  B, which can be thought of as  B ( x ). This simple-looking theorem is actually quite powerful and appears to involve the Axiom of Replacement in an intrinsic way, as can be seen by tracing back through the path mptexg 5692, funex 5690, fnex 5689, resfunexg 5688, and funimaexg 5254. See also abrexex2 6072. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
 |-  A  e.  _V   =>    |-  { y  | 
 E. x  e.  A  y  =  B }  e.  _V
 
Theoremabrexexg 6066* Existence of a class abstraction of existentially restricted sets.  x is normally a free-variable parameter in  B. The antecedent assures us that  A is a set. (Contributed by NM, 3-Nov-2003.)
 |-  ( A  e.  V  ->  { y  |  E. x  e.  A  y  =  B }  e.  _V )
 
Theoremiunexg 6067* The existence of an indexed union. 
x is normally a free-variable parameter in  B. (Contributed by NM, 23-Mar-2006.)
 |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  W )  ->  U_ x  e.  A  B  e.  _V )
 
Theoremabrexex2g 6068* Existence of an existentially restricted class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( ( A  e.  V  /\  A. x  e.  A  { y  | 
 ph }  e.  W )  ->  { y  | 
 E. x  e.  A  ph
 }  e.  _V )
 
Theoremopabex3d 6069* Existence of an ordered pair abstraction, deduction version. (Contributed by Alexander van der Vekens, 19-Oct-2017.)
 |-  ( ph  ->  A  e.  _V )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  { y  |  ps }  e.  _V )   =>    |-  ( ph  ->  {
 <. x ,  y >.  |  ( x  e.  A  /\  ps ) }  e.  _V )
 
Theoremopabex3 6070* Existence of an ordered pair abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  A  e.  _V   &    |-  ( x  e.  A  ->  { y  |  ph }  e.  _V )   =>    |- 
 { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  e.  _V
 
Theoremiunex 6071* The existence of an indexed union. 
x is normally a free-variable parameter in the class expression substituted for  B, which can be read informally as  B ( x ). (Contributed by NM, 13-Oct-2003.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  U_ x  e.  A  B  e.  _V
 
Theoremabrexex2 6072* Existence of an existentially restricted class abstraction.  ph is normally has free-variable parameters  x and  y. See also abrexex 6065. (Contributed by NM, 12-Sep-2004.)
 |-  A  e.  _V   &    |-  { y  |  ph }  e.  _V   =>    |-  { y  |  E. x  e.  A  ph
 }  e.  _V
 
Theoremabexssex 6073* Existence of a class abstraction with an existentially quantified expression. Both  x and  y can be free in  ph. (Contributed by NM, 29-Jul-2006.)
 |-  A  e.  _V   &    |-  { y  |  ph }  e.  _V   =>    |-  { y  |  E. x ( x 
 C_  A  /\  ph ) }  e.  _V
 
Theoremabexex 6074* A condition where a class builder continues to exist after its wff is existentially quantified. (Contributed by NM, 4-Mar-2007.)
 |-  A  e.  _V   &    |-  ( ph  ->  x  e.  A )   &    |- 
 { y  |  ph }  e.  _V   =>    |- 
 { y  |  E. x ph }  e.  _V
 
Theoremoprabexd 6075* Existence of an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( ph  ->  A  e.  _V )   &    |-  ( ph  ->  B  e.  _V )   &    |-  (
 ( ph  /\  ( x  e.  A  /\  y  e.  B ) )  ->  E* z ps )   &    |-  ( ph  ->  F  =  { <.
 <. x ,  y >. ,  z >.  |  (
 ( x  e.  A  /\  y  e.  B )  /\  ps ) }
 )   =>    |-  ( ph  ->  F  e.  _V )
 
Theoremoprabex 6076* Existence of an operation class abstraction. (Contributed by NM, 19-Oct-2004.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( ( x  e.  A  /\  y  e.  B )  ->  E* z ph )   &    |-  F  =  { <.
 <. x ,  y >. ,  z >.  |  (
 ( x  e.  A  /\  y  e.  B )  /\  ph ) }   =>    |-  F  e.  _V
 
Theoremoprabex3 6077* Existence of an operation class abstraction (special case). (Contributed by NM, 19-Oct-2004.)
 |-  H  e.  _V   &    |-  F  =  { <. <. x ,  y >. ,  z >.  |  ( ( x  e.  ( H  X.  H )  /\  y  e.  ( H  X.  H ) )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f >. ) 
 /\  z  =  R ) ) }   =>    |-  F  e.  _V
 
Theoremoprabrexex2 6078* Existence of an existentially restricted operation abstraction. (Contributed by Jeff Madsen, 11-Jun-2010.)
 |-  A  e.  _V   &    |-  { <. <. x ,  y >. ,  z >.  |  ph }  e.  _V   =>    |-  {
 <. <. x ,  y >. ,  z >.  |  E. w  e.  A  ph }  e.  _V
 
Theoremab2rexex 6079* Existence of a class abstraction of existentially restricted sets. Variables  x and  y are normally free-variable parameters in the class expression substituted for  C, which can be thought of as  C ( x ,  y ). See comments for abrexex 6065. (Contributed by NM, 20-Sep-2011.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |- 
 { z  |  E. x  e.  A  E. y  e.  B  z  =  C }  e.  _V
 
Theoremab2rexex2 6080* Existence of an existentially restricted class abstraction.  ph normally has free-variable parameters  x,  y, and  z. Compare abrexex2 6072. (Contributed by NM, 20-Sep-2011.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  { z  | 
 ph }  e.  _V   =>    |-  { z  |  E. x  e.  A  E. y  e.  B  ph
 }  e.  _V
 
TheoremxpexgALT 6081 The cross product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. This version is proven using Replacement; see xpexg 4700 for a version that uses the Power Set axiom instead. (Contributed by Mario Carneiro, 20-May-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  X.  B )  e.  _V )
 
Theoremoffval3 6082* General value of  ( F  oF R G ) with no assumptions on functionality of  F and  G. (Contributed by Stefan O'Rear, 24-Jan-2015.)
 |-  ( ( F  e.  V  /\  G  e.  W )  ->  ( F  oF R G )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
  x ) R ( G `  x ) ) ) )
 
Theoremoffres 6083 Pointwise combination commutes with restriction. (Contributed by Stefan O'Rear, 24-Jan-2015.)
 |-  ( ( F  e.  V  /\  G  e.  W )  ->  ( ( F  oF R G )  |`  D )  =  ( ( F  |`  D )  oF R ( G  |`  D )
 ) )
 
Theoremofmres 6084* Equivalent expressions for a restriction of the function operation map. Unlike  oF R which is a proper class,  (  oF R  |`  ( A  X.  B
) ) can be a set by ofmresex 6085, allowing it to be used as a function or structure argument. By ofmresval 6043, the restricted operation map values are the same as the original values, allowing theorems for  oF R to be reused. (Contributed by NM, 20-Oct-2014.)
 |-  (  oF R  |`  ( A  X.  B ) )  =  (
 f  e.  A ,  g  e.  B  |->  ( f  oF R g ) )
 
Theoremofmresex 6085 Existence of a restriction of the function operation map. (Contributed by NM, 20-Oct-2014.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   =>    |-  ( ph  ->  (  oF R  |`  ( A  X.  B ) )  e.  _V )
 
2.6.15  First and second members of an ordered pair
 
Syntaxc1st 6086 Extend the definition of a class to include the first member an ordered pair function.
 class  1st
 
Syntaxc2nd 6087 Extend the definition of a class to include the second member an ordered pair function.
 class  2nd
 
Definitiondf-1st 6088 Define a function that extracts the first member, or abscissa, of an ordered pair. Theorem op1st 6094 proves that it does this. For example, ( 1st `  <. 3 , 4  >.) = 3 . Equivalent to Definition 5.13 (i) of [Monk1] p. 52 (compare op1sta 5067 and op1stb 4438). The notation is the same as Monk's. (Contributed by NM, 9-Oct-2004.)
 |- 
 1st  =  ( x  e.  _V  |->  U. dom  { x } )
 
Definitiondf-2nd 6089 Define a function that extracts the second member, or ordinate, of an ordered pair. Theorem op2nd 6095 proves that it does this. For example,  ( 2nd ` 
<. 3 , 4 
>.) = 4 . Equivalent to Definition 5.13 (ii) of [Monk1] p. 52 (compare op2nda 5070 and op2ndb 5069). The notation is the same as Monk's. (Contributed by NM, 9-Oct-2004.)
 |- 
 2nd  =  ( x  e.  _V  |->  U. ran  { x } )
 
Theorem1stvalg 6090 The value of the function that extracts the first member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
 |-  ( A  e.  _V  ->  ( 1st `  A )  =  U. dom  { A } )
 
Theorem2ndvalg 6091 The value of the function that extracts the second member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
 |-  ( A  e.  _V  ->  ( 2nd `  A )  =  U. ran  { A } )
 
Theorem1st0 6092 The value of the first-member function at the empty set. (Contributed by NM, 23-Apr-2007.)
 |-  ( 1st `  (/) )  =  (/)
 
Theorem2nd0 6093 The value of the second-member function at the empty set. (Contributed by NM, 23-Apr-2007.)
 |-  ( 2nd `  (/) )  =  (/)
 
Theoremop1st 6094 Extract the first member of an ordered pair. (Contributed by NM, 5-Oct-2004.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( 1st `  <. A ,  B >. )  =  A
 
Theoremop2nd 6095 Extract the second member of an ordered pair. (Contributed by NM, 5-Oct-2004.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( 2nd `  <. A ,  B >. )  =  B
 
Theoremop1std 6096 Extract the first member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( C  =  <. A ,  B >.  ->  ( 1st `  C )  =  A )
 
Theoremop2ndd 6097 Extract the second member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( C  =  <. A ,  B >.  ->  ( 2nd `  C )  =  B )
 
Theoremop1stg 6098 Extract the first member of an ordered pair. (Contributed by NM, 19-Jul-2005.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( 1st `  <. A ,  B >. )  =  A )
 
Theoremop2ndg 6099 Extract the second member of an ordered pair. (Contributed by NM, 19-Jul-2005.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( 2nd `  <. A ,  B >. )  =  B )
 
Theoremot1stg 6100 Extract the first member of an ordered triple. (Due to infrequent usage, it isn't worthwhile at this point to define special extractors for triples, so we reuse the ordered pair extractors for ot1stg 6100, ot2ndg 6101, ot3rdgg 6102.) (Contributed by NM, 3-Apr-2015.) (Revised by Mario Carneiro, 2-May-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X ) 
 ->  ( 1st `  ( 1st `  <. A ,  B ,  C >. ) )  =  A )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13663
  Copyright terms: Public domain < Previous  Next >