Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ofeq | Unicode version |
Description: Equality theorem for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.) |
Ref | Expression |
---|---|
ofeq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 992 | . . . . 5 | |
2 | 1 | oveqd 5870 | . . . 4 |
3 | 2 | mpteq2dv 4080 | . . 3 |
4 | 3 | mpoeq3dva 5917 | . 2 |
5 | df-of 6061 | . 2 | |
6 | df-of 6061 | . 2 | |
7 | 4, 5, 6 | 3eqtr4g 2228 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 w3a 973 wceq 1348 wcel 2141 cvv 2730 cin 3120 cmpt 4050 cdm 4611 cfv 5198 (class class class)co 5853 cmpo 5855 cof 6059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-iota 5160 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-of 6061 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |