Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ofeq | Unicode version |
Description: Equality theorem for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.) |
Ref | Expression |
---|---|
ofeq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 987 | . . . . 5 | |
2 | 1 | oveqd 5859 | . . . 4 |
3 | 2 | mpteq2dv 4073 | . . 3 |
4 | 3 | mpoeq3dva 5906 | . 2 |
5 | df-of 6050 | . 2 | |
6 | df-of 6050 | . 2 | |
7 | 4, 5, 6 | 3eqtr4g 2224 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 w3a 968 wceq 1343 wcel 2136 cvv 2726 cin 3115 cmpt 4043 cdm 4604 cfv 5188 (class class class)co 5842 cmpo 5844 cof 6048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-iota 5153 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-of 6050 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |