ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofeq Unicode version

Theorem ofeq 6163
Description: Equality theorem for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.)
Assertion
Ref Expression
ofeq  |-  ( R  =  S  ->  oF R  =  oF S )

Proof of Theorem ofeq
Dummy variables  f  g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1000 . . . . 5  |-  ( ( R  =  S  /\  f  e.  _V  /\  g  e.  _V )  ->  R  =  S )
21oveqd 5963 . . . 4  |-  ( ( R  =  S  /\  f  e.  _V  /\  g  e.  _V )  ->  (
( f `  x
) R ( g `
 x ) )  =  ( ( f `
 x ) S ( g `  x
) ) )
32mpteq2dv 4136 . . 3  |-  ( ( R  =  S  /\  f  e.  _V  /\  g  e.  _V )  ->  (
x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) )  =  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x ) S ( g `  x ) ) ) )
43mpoeq3dva 6011 . 2  |-  ( R  =  S  ->  (
f  e.  _V , 
g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) ) )  =  ( f  e. 
_V ,  g  e. 
_V  |->  ( x  e.  ( dom  f  i^i 
dom  g )  |->  ( ( f `  x
) S ( g `
 x ) ) ) ) )
5 df-of 6160 . 2  |-  oF R  =  ( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x
) R ( g `
 x ) ) ) )
6 df-of 6160 . 2  |-  oF S  =  ( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x
) S ( g `
 x ) ) ) )
74, 5, 63eqtr4g 2263 1  |-  ( R  =  S  ->  oF R  =  oF S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 981    = wceq 1373    e. wcel 2176   _Vcvv 2772    i^i cin 3165    |-> cmpt 4106   dom cdm 4676   ` cfv 5272  (class class class)co 5946    e. cmpo 5948    oFcof 6158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-uni 3851  df-br 4046  df-opab 4107  df-mpt 4108  df-iota 5233  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-of 6160
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator