ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofeq Unicode version

Theorem ofeq 6063
Description: Equality theorem for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.)
Assertion
Ref Expression
ofeq  |-  ( R  =  S  ->  oF R  =  oF S )

Proof of Theorem ofeq
Dummy variables  f  g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 992 . . . . 5  |-  ( ( R  =  S  /\  f  e.  _V  /\  g  e.  _V )  ->  R  =  S )
21oveqd 5870 . . . 4  |-  ( ( R  =  S  /\  f  e.  _V  /\  g  e.  _V )  ->  (
( f `  x
) R ( g `
 x ) )  =  ( ( f `
 x ) S ( g `  x
) ) )
32mpteq2dv 4080 . . 3  |-  ( ( R  =  S  /\  f  e.  _V  /\  g  e.  _V )  ->  (
x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) )  =  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x ) S ( g `  x ) ) ) )
43mpoeq3dva 5917 . 2  |-  ( R  =  S  ->  (
f  e.  _V , 
g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) ) )  =  ( f  e. 
_V ,  g  e. 
_V  |->  ( x  e.  ( dom  f  i^i 
dom  g )  |->  ( ( f `  x
) S ( g `
 x ) ) ) ) )
5 df-of 6061 . 2  |-  oF R  =  ( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x
) R ( g `
 x ) ) ) )
6 df-of 6061 . 2  |-  oF S  =  ( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x
) S ( g `
 x ) ) ) )
74, 5, 63eqtr4g 2228 1  |-  ( R  =  S  ->  oF R  =  oF S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 973    = wceq 1348    e. wcel 2141   _Vcvv 2730    i^i cin 3120    |-> cmpt 4050   dom cdm 4611   ` cfv 5198  (class class class)co 5853    e. cmpo 5855    oFcof 6059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-iota 5160  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-of 6061
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator