| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opabbidv | Unicode version | ||
| Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 15-May-1995.) |
| Ref | Expression |
|---|---|
| opabbidv.1 |
|
| Ref | Expression |
|---|---|
| opabbidv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1574 |
. 2
| |
| 2 | nfv 1574 |
. 2
| |
| 3 | opabbidv.1 |
. 2
| |
| 4 | 1, 2, 3 | opabbid 4148 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-opab 4145 |
| This theorem is referenced by: opabbii 4150 csbopabg 4161 xpeq1 4732 xpeq2 4733 opabbi2dv 4870 csbcnvg 4905 resopab2 5051 mptcnv 5130 cores 5231 xpcom 5274 dffn5im 5678 f1oiso2 5950 f1ocnvd 6206 ofreq 6220 f1od2 6379 shftfvalg 11324 shftfval 11327 2shfti 11337 prdsex 13297 prdsval 13301 releqgg 13752 eqgex 13753 eqgfval 13754 reldvdsrsrg 14050 dvdsrvald 14051 dvdsrpropdg 14105 aprval 14240 aprap 14244 lmfval 14860 lgsquadlem3 15752 wksfval 16028 |
| Copyright terms: Public domain | W3C validator |