Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opabbidv | Unicode version |
Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 15-May-1995.) |
Ref | Expression |
---|---|
opabbidv.1 |
Ref | Expression |
---|---|
opabbidv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1508 | . 2 | |
2 | nfv 1508 | . 2 | |
3 | opabbidv.1 | . 2 | |
4 | 1, 2, 3 | opabbid 4029 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1335 copab 4024 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-11 1486 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-opab 4026 |
This theorem is referenced by: opabbii 4031 csbopabg 4042 xpeq1 4599 xpeq2 4600 opabbi2dv 4734 csbcnvg 4769 resopab2 4912 mptcnv 4987 cores 5088 xpcom 5131 dffn5im 5513 f1oiso2 5774 f1ocnvd 6019 ofreq 6032 f1od2 6179 shftfvalg 10711 shftfval 10714 2shfti 10724 lmfval 12563 |
Copyright terms: Public domain | W3C validator |