| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opabbidv | Unicode version | ||
| Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 15-May-1995.) |
| Ref | Expression |
|---|---|
| opabbidv.1 |
|
| Ref | Expression |
|---|---|
| opabbidv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1550 |
. 2
| |
| 2 | nfv 1550 |
. 2
| |
| 3 | opabbidv.1 |
. 2
| |
| 4 | 1, 2, 3 | opabbid 4108 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-opab 4105 |
| This theorem is referenced by: opabbii 4110 csbopabg 4121 xpeq1 4688 xpeq2 4689 opabbi2dv 4826 csbcnvg 4861 resopab2 5005 mptcnv 5084 cores 5185 xpcom 5228 dffn5im 5623 f1oiso2 5895 f1ocnvd 6147 ofreq 6161 f1od2 6320 shftfvalg 11071 shftfval 11074 2shfti 11084 prdsex 13043 prdsval 13047 releqgg 13498 eqgex 13499 eqgfval 13500 reldvdsrsrg 13796 dvdsrvald 13797 dvdsrpropdg 13851 aprval 13986 aprap 13990 lmfval 14606 lgsquadlem3 15498 |
| Copyright terms: Public domain | W3C validator |