![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opabbidv | Unicode version |
Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 15-May-1995.) |
Ref | Expression |
---|---|
opabbidv.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
opabbidv |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1539 |
. 2
![]() ![]() ![]() ![]() | |
2 | nfv 1539 |
. 2
![]() ![]() ![]() ![]() | |
3 | opabbidv.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | opabbid 4086 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-opab 4083 |
This theorem is referenced by: opabbii 4088 csbopabg 4099 xpeq1 4661 xpeq2 4662 opabbi2dv 4797 csbcnvg 4832 resopab2 4975 mptcnv 5052 cores 5153 xpcom 5196 dffn5im 5585 f1oiso2 5852 f1ocnvd 6100 ofreq 6114 f1od2 6264 shftfvalg 10868 shftfval 10871 2shfti 10881 prdsex 12785 releqgg 13184 eqgex 13185 eqgfval 13186 reldvdsrsrg 13467 dvdsrvald 13468 dvdsrpropdg 13522 aprval 13623 aprap 13627 lmfval 14177 |
Copyright terms: Public domain | W3C validator |