| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opabbidv | Unicode version | ||
| Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 15-May-1995.) |
| Ref | Expression |
|---|---|
| opabbidv.1 |
|
| Ref | Expression |
|---|---|
| opabbidv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1552 |
. 2
| |
| 2 | nfv 1552 |
. 2
| |
| 3 | opabbidv.1 |
. 2
| |
| 4 | 1, 2, 3 | opabbid 4117 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-opab 4114 |
| This theorem is referenced by: opabbii 4119 csbopabg 4130 xpeq1 4697 xpeq2 4698 opabbi2dv 4835 csbcnvg 4870 resopab2 5015 mptcnv 5094 cores 5195 xpcom 5238 dffn5im 5637 f1oiso2 5909 f1ocnvd 6161 ofreq 6175 f1od2 6334 shftfvalg 11204 shftfval 11207 2shfti 11217 prdsex 13176 prdsval 13180 releqgg 13631 eqgex 13632 eqgfval 13633 reldvdsrsrg 13929 dvdsrvald 13930 dvdsrpropdg 13984 aprval 14119 aprap 14123 lmfval 14739 lgsquadlem3 15631 |
| Copyright terms: Public domain | W3C validator |